Browsing by Subject "norepinephrine"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Levy, Bruno; Clere-Jehl, Raphael; Legras, Annick; Morichau-Beauchant, Tristan; Leone, Marc; Frederique, Ganster; Quenot, Jean-Pierre; Kimmoun, Antoine; Cariou, Alain; Lassus, Johan; Harjola, Veli-Pekka; Meziani, Ferhat; Louis, Guillaume; Rossignol, Patrick; Duarte, Kevin; Girerd, Nicolas; Mebazaa, Alexandre; Vignon, Philippe (2018)
    BACKGROUND Vasopressor agents could have certain specific effects in patients with cardiogenic shock (CS) after myocardial infarction, which may influence outcome. Although norepinephrine and epinephrine are currently the most commonly used agents, no randomized trial has compared their effects, and intervention data are lacking. OBJECTIVES The goal of this paper was to compare in a prospective, double-blind, multicenter, randomized study, the efficacy and safety of epinephrine and norepinephrine in patients with CS after acute myocardial infarction. METHODS The primary efficacy outcome was cardiac index evolution, and the primary safety outcome was the occurrence of refractory CS. Refractory CS was defined as CS with sustained hypotension, end-organ hypoperfusion and hyperlactatemia, and high inotrope and vasopressor doses. RESULTS Fifty-seven patients were randomized into 2 study arms, epinephrine and norepinephrine. For the primary efficacy endpoint, cardiac index evolution was similar between the 2 groups (p = 0.43) from baseline (H0) to H72. For the main safety endpoint, the observed higher incidence of refractory shock in the epinephrine group (10 of 27 [37%] vs. norepinephrine 2 of 30 [7%]; p = 0.008) led to early termination of the study. Heart rate increased significantly with epinephrine from H2 to H24 while remaining unchanged with norepinephrine (p <0.0001). Several metabolic changes were unfavorable to epinephrine compared with norepinephrine, including an increase in cardiac double product (p = 0.0002) and lactic acidosis from H2 to H24 (p <0.0001). CONCLUSIONS In patients with CS secondary to acute myocardial infarction, the use of epinephrine compared with norepinephrine was associated with similar effects on arterial pressure and cardiac index and a higher incidence of refractory shock. (Study Comparing the Efficacy and Tolerability of Epinephrine and Norepinephrine in Cardiogenic Shock [OptimaCC]; NCT01367743) (J AmColl Cardiol 2018; 72: 173-82) (C) 2018 by the American College of Cardiology Foundation.
  • Leopold, Anna V.; Shcherbakova, Daria; Verkhusha, Vladislav V. (2019)
    Understanding how neuronal activity patterns in the brain correlate with complex behavior is one of the primary goals of modern neuroscience. Chemical transmission is the major way of communication between neurons, however, traditional methods of detection of neurotransmitter and neuromodulator transients in mammalian brain lack spatiotemporal precision. Modern fluorescent biosensors for neurotransmitters and neuromodulators allow monitoring chemical transmission in vivo with millisecond precision and single cell resolution. Changes in the fluorescent biosensor brightness occur upon neurotransmitter binding and can be detected using fiber photometry, stationary microscopy and miniaturized head-mounted microscopes. Biosensors can be expressed in the animal brain using adeno-associated viral vectors, and their cell-specific expression can be achieved with Cre-recombinase expressing animals. Although initially fluorescent biosensors for chemical transmission were represented by glutamate biosensors, nowadays biosensors for GABA, acetylcholine, glycine, norepinephrine, and dopamine are available as well. In this review, we overview functioning principles of existing intensiometric and ratiometric biosensors and provide brief insight into the variety of neurotransmitter-binding proteins from bacteria, plants, and eukaryotes including G-protein coupled receptors, which may serve as neurotransmitter-binding scaffolds. We next describe a workflow for development of neurotransmitter and neuromodulator biosensors. We then discuss advanced setups for functional imaging of neurotransmitter transients in the brain of awake freely moving animals. We conclude by providing application examples of biosensors for the studies of complex behavior with the single-neuron precision.
  • Süvari, Liina; Janer, Cecilia; Helve, Otto; Kaskinen, Anu; Turpeinen, Ursula; Pitkänen-Argillander, Olli; Andersson, Sture (2019)
    IntroductionLung fluid clearance is essential for successful postnatal pulmonary adaptation. The epithelial sodium channel (ENaC) and Na-K-ATPase, induced by serum- and glucocorticoid-inducible kinase 1 (SGK1) as well as aquaporins (AQP), represent key players in the switch from fetal lung fluid secretion to absorption and in early postnatal lung fluid balance. Birth stress, including a surge in catecholamines, promotes pulmonary adaptation, likely through the augmentation of epithelial sodium reabsorption. ObjectivesWe sought to determine the changes in the airway gene expression of molecules vital to epithelial sodium transport during early pulmonary adaptation, and the association with birth stress reflected in the norepinephrine concentration in the cord blood in humans. MethodsWe included 70 term newborns: 28 born via vaginal delivery and 42 via elective cesarean section. We determined the norepinephrine concentrations in the cord blood using tandem mass spectrometry and collected nasal epithelial cell samples at 2min, 1h, and 24h postnatally to quantify ENaC, Na-K-ATPase, AQP5, and SGK1 mRNAs using RT-PCR. ResultsThe molecular gene expression involved in airway epithelium sodium transport changed markedly within the first hour postnatally. Newborns born via elective cesarean section exhibited a lower expression of ENaC, Na-K-ATPase, and SGK1. Significant correlations existed between the expressions of ENaC, Na-K-ATPase, and SGK1, and the concentration of norepinephrine in the cord blood. ConclusionsThe association of ENaC, Na-K-ATPase, and SGK1 expression with the cord blood norepinephrine concentration points to the importance of birth stress in promoting lung fluid clearance during early postnatal pulmonary adaptation.