Browsing by Subject "numerical simulations"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Nurminen, Niilo Waltteri (Helsingin yliopisto, 2021)
    Phase transitions in the early Universe and in condensed matter physics are active fields of research. During these transitions, objects such as topological solitons and defects are produced by the breaking of symmetry. Studying such objects more thoroughly could shed light on some of the modern problems in cosmology such as baryogenesis and explain many aspects in materials research. One example of such topological solitons are the (1+1) dimensional kinks and their respective higher dimensional domain walls. The dynamics of kink collisions are complicated and very sensitive to initial conditions. Making accurate predictions within such a system has proven to be difficult, and research has been conducted since the 70s. Especially difficult is predicting the location of resonance windows and giving a proper theoretical explanation for such a structure. Deeper understanding of these objects is interesting in its own right but can also bring insight in predicting their possibly generated cosmological signatures. In this thesis we have summarized the common field theoretic tools and methods for the analytic treatment of kinks. Homotopy theory and its applications are also covered in the context of classifying topological solitons and defects. We present our numerical simulation scheme and results on kink-antikink and kink-impurity collisions in the $\phi^4$ model. Kink-antikink pair production from a wobbling kink is also studied, in which case we found that the separation velocity of the produced kink-antikink pair is directly correlated with the excitation amplitude of the wobbling kink. Direct annihilation of the produced pair was also observed. We modify the $\phi^4$ model by adding a small linear term $\delta \phi^3$, which modifies the kinks into accelerating bubble walls. The collision dynamics and pair production of these objects are explored with the same simulation methods. We observe multiple new effects in kink-antikink collisions, such as potentially perpetual bouncing and faster bion formation in comparison to the $\phi^4$ model. We also showed that the $\delta$ term defines the preferred vacuum by inevitably annihilating any kink-antikink pair. During pair production we noticed a momentum transfer between the produced bion and the original kink and that direct annihilation seems unlikely in such processes. For wobbling kink - impurity collisions we found an asymmetric spectral wall. Future research prospects and potential expansions for our analysis are also discussed.
  • Grandin, Maxime; Turc, Lucile; Battarbee, Markus; Ganse, Urs; Johlander, Andreas; Pfau-Kempf, Yann; Dubart, Maxime; Palmroth, Minna (2020)
    Particle precipitation is a central aspect of space weather, as it strongly couples the magnetosphere and the ionosphere and can be responsible for radio signal disruption at high latitudes. We present the first hybrid-Vlasov simulations of proton precipitation in the polar cusps. We use two runs from the Vlasiator model to compare cusp proton precipitation fluxes during southward and northward interplanetary magnetic field (IMF) driving. The simulations reproduce well-known features of cusp precipitation, such as a reverse dispersion of precipitating proton energies, with proton energies increasing with increasing geomagnetic latitude under northward IMF driving, and a nonreversed dispersion under southward IMF driving. The cusp is also found more polewards in the northward IMF simulation than in the southward IMF simulation. In addition, we find that the bursty precipitation during southward IMF driving is associated with the transit of flux transfer events in the vicinity of the cusp. In the northward IMF simulation, dual lobe reconnection takes place. As a consequence, in addition to the high-latitude precipitation spot associated with the lobe reconnection from the same hemisphere, we observe lower-latitude precipitating protons which originate from the opposite hemisphere's lobe reconnection site. The proton velocity distribution functions along the newly closed dayside magnetic field lines exhibit multiple proton beams travelling parallel and antiparallel to the magnetic field direction, which is consistent with previously reported observations with the Cluster spacecraft. In both runs, clear electromagnetic ion cyclotron waves are generated in the cusps and might further increase the calculated precipitating fluxes by scattering protons to the loss cone in the low-altitude cusp. Global kinetic simulations can improve the understanding of space weather by providing a detailed physical description of the entire near-Earth space and its internal couplings.
  • Hoilijoki, Sanni (Finnish Meteorological Institute, 2017)
    Finnish Meteorological Institute Contributions 132
    This thesis investigates interactions between solar wind and the magnetosphere of the Earth using two global magnetosphericsimulation models, GUMICS-4 and Vlasiator, which are both developed in Finland. The main topic of the thesis is magnetic reconnection at the dayside magnetopause, its drivers and global effects. Magnetosheath mirror mode waves and their evolution, identification and impacts on the local reconnection rates at the magnetopause are also discussed. This thesis consists of four peer-reviewed papers and an introductory part. GUMICS-4 is a magnetohydrodynamic model solving plasma as a single magnetized fluid. Vlasiator is the world’s first global magnetospheric hybrid-Vlasov simulation model, which solves the motion of ions by describing them as velocity distribution functions, whereas electrons are described as a charge neutralizing fluid. Vlasiator is able to solve ion scale physics in a global scale simulation. However, it is computationally heavy and the global simulations are currently describing Earth’s magnetosphere only in two spatial dimensions, whereas the velocity space is three dimensional. This thesis shows that magnetic reconnection at the dayside magnetopause is controlled by several factors. The impact of dipole tilt angle and sunward component of the interplanetary magnetic field on magnetopause reconnection is investigated with a set of GUMICS-4 simulations. Using Vlasiator simulations, this thesis shows that local reconnection rate is highly variable even during steady solar wind and correlates well with an analytical model for 2D asymmetric reconnection. It is also shown that the local reconnection rate is affected by local variations in the magnetosheath plasma. Fluctuations in the magnetosheath parameters near X-lines are partly generated by mirror mode waves that are observed to grow in the quasi-perpendicular magnetosheath. These results show that that the local reconnection rate at the X-lines is affected not only by the fluctuations in the inflow parameters but also by reconnection at nearby X-lines. Outflow from stronger X-lines pushes against the weaker ones and might ultimately suppress reconnection in the weaker X-lines. Magnetic islands, 2D representations of FTEs, form between X-lines in the Vlasiator simulations. FTEs propagate along the dayside magnetopause driving bow waves in the magnetosheath. The bow waves propagate upstream all the way to the bow shock causing bulges in the shock, from which solar wind particles can reflect back to the solar wind causing local foreshocks. The overall conclusion of this thesis is that the ion scale kinetic physics is important to accurately model the solar wind – magnetosheath – magnetopause interactions. Vlasiator results show a strong scale-coupling between ion and global scales: global scale phenomena have an impact on the local physics and the local phenomena may have unexpected impacts on the global dynamics of the magnetosphere. Neglecting the global scales in local ion scale simulations and vice versa may therefore lead to incomplete description of the solar wind – magnetosphere interactions.