Browsing by Subject "nutrient sensing"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Kuitunen, Essi (Helsingin yliopisto, 2019)
    Glutamine, the conditionally essential amino acid, is a major carbon and nitrogen carrier required for a range of cell functions, such as protein synthesis and maintaining redox balance. While healthy cells adjust their activities in response to glutamine availability, tumor cells display deregulated glutamine uptake and metabolism allowing quick proliferation and survival in cellular stress conditions. Hence, further knowledge of the glutamine sensing network is of interest. Utilizing Drosophila melanogaster, the roles of formerly identified glutamine sensing regulator candidates, Forkhead box O (FoxO), Super sex combs (Sxc), Spalt major (Salm) and Spalt-related (Salr), were explored. Drosophila is an efficient model organism for analyzing gene regulatory mechanisms, with its simple genome but conserved genes and metabolic pathways. Loss-of function and gain-of-function mutants of the candidates were cultured with/without glutamine, and their physiological response and gene expression changes were analyzed. The results show the glutamine intolerant phenotype of FoxO and Sxc deficiency, not dependent on altered food intake levels of larvae. However, glutamine intolerance of Salr and Salm deficiency was not observed. Moreover, we aimed to gain further insight to the roles of FoxO and Sxc in glutamine metabolism. Since amino acid catabolism produces ammonia, and glutamine metabolism plays a vital role in ammonia detoxification, we performed a pH-based measurement of foxo and sxc mutant larvae hemolymph on food with/without glutamine. However, we could not associate FoxO or Sxc with regulation of glutamine-derived ammonia clearance. In addition, we explored FoxO downstream regulator candidates. Putative promoter areas of Paics, Uro, Sesn, salr, Prat2 and Gdh were cloned into reporter vectors and the luciferase activity was analyzed under the expression of foxo. The results indicate that FoxO is a regulator of all of the 6 genes. Next we could utilize the here constructed plasmids to see whether the FoxO-mediated regulation is affected by altered glutamine levels in cell culture.
  • Hasygar, Kiran; Deniz, Onur; Liu, Ying; Gullmets, Josef; Hynynen, Riikka; Ruhanen, Hanna; Kokki, Krista; Kakela, Reijo; Hietakangas, Ville (2021)
    Energy storage and growth are coordinated in response to nutrient status of animals. How nutrient-regulated signaling pathways control these processes in vivo remains insufficiently understood. Here, we establish an atypical MAP kinase, ERK7, as an inhibitor of adiposity and growth in Drosophila. ERK7 mutant larvae display elevated triacylglycerol (TAG) stores and accelerated growth rate, while overexpressed ERK7 is sufficient to inhibit lipid storage and growth. ERK7 expression is elevated upon fasting and ERK7 mutant larvae display impaired survival during nutrient deprivation. ERK7 acts in the fat body, the insect counterpart of liver and adipose tissue, where it controls the subcellular localization of chromatin-binding protein PWP1, a growth-promoting downstream effector of mTOR. PWP1 maintains the expression of sugarbabe, encoding a lipogenic Gli-similar family transcription factor. Both PWP1 and Sugarbabe are necessary for the increased growth and adiposity phenotypes of ERK7 loss-of-function animals. In conclusion, ERK7 is an anti-anabolic kinase that inhibits lipid storage and growth while promoting survival on fasting conditions.