Browsing by Subject "paikallisilmasto"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Vilmi, A.; Zhao, W.; Picazo, F.; Li, M.; Heino, J.; Soininen, J.; Wang, J. (2019)
    Science of the Total Environment 702: 134974
    Understanding the role of climatic variation on biodiversity is of chief importance due to the ongoing biodiversity loss and climate change. Freshwaters, one of the most threatened ecosystems in the world, offer a valuable context to study biodiversity patterns of distinct organism groups in relation to climatic variation. In the Tibetan Plateau biodiversity hotspot - Hengduan Mountain region, we studied the effects of climate and local physico-chemical factors on stream microorganisms (i.e. bacteria) and macroorganisms (i.e. macroinvertebrates) in two parallel catchments with contrasting precipitation and temperature, that is, the Nujiang and Lancang Rivers. Diversities and community structures were better explained by climatic and local environmental variables in the drier and colder catchment and at higher elevations, than in the warmer and wetter conditions and at lower elevations. This suggests that communities may be more strongly assembled by deterministic processes in the former, comparatively harsher conditions, compared to the latter, more benign conditions. Macroinvertebrates were more strongly affected by climatic and local environmental factors compared to bacteria, but the diversities and community structures of the two groups showed spatially similar responses to overall abiotic variation, being especially evident with their community structures' responses to climate. Furthermore, bacterial and macroinvertebrate diversities were positively correlated in the drier and colder catchment, implying that these biologically and ecologically distinct organism groups are likely to be driven by similar processes in areas with such climatic conditions. We conclude that changes in climatic and local environmental conditions may affect the diversity of macroorganisms more strongly than that of microorganisms, at least in subtropical mountainous stream ecosystems studied here, but simultaneous responses of both groups to environmental changes can also be expected.
  • Fourcade, Yoan; WallisDeVries, Michiel F.; Kuussaari, Mikko; Swaay, Chris A. M.; Heliölä, Janne; Öckinger, Erik (John Wiley & Sons Ltd, 2021)
    Ecology Letters 24: 5, 950-957
    Habitat fragmentation may present a major impediment to species range shifts caused by climate change, but how it affects local community dynamics in a changing climate has so far not been adequately investigated empirically. Using long-term monitoring data of butterfly assemblages, we tested the effects of the amount and distribution of semi-natural habitat (SNH), moderated by species traits, on climate-driven species turnover. We found that spatially dispersed SNH favoured the colonisation of warm-adapted and mobile species. In contrast, extinction risk of cold-adapted species increased in dispersed (as opposed to aggregated) habitats and when the amount of SNH was low. Strengthening habitat networks by maintaining or creating stepping-stone patches could thus allow warm-adapted species to expand their range, while increasing the area of natural habitat and its spatial cohesion may be important to aid the local persistence of species threatened by a warming climate.
  • Päivänen, Juhani (Suomen metsätieteellinen seura, 1973)
  • Karhinen, Santtu; Peltomaa, Juha; Riekkinen, Venla; Saikku, Laura (Elsevier, 2021)
    Global Environmental Change 67 (2021), 102225
    Local governments have set highly ambitious greenhouse gas emission reduction targets on a strategic level, in some cases influenced by intermediary networks. Yet, the quantitative impacts of climate strategies or the sharing of best practices on emissions still remain largely unknown. The aim of this study was to examine the impact of an intermediary network on municipal greenhouse gas emissions. This was done through an econometric analysis of the emissions of municipalities that are members of the Finnish Hinku (Towards Carbon Neutral Municipalities) network, and through comprehensive qualitative interviews conducted in 40 of those municipalities. Our quantitative results show that Hinku network membership has successfully led to the lowering of greenhouse gas emission levels in participating municipalities. The qualitative interviews suggest that this is due to systematic local level climate work, enhanced by network membership. The network functions as an intermediary in two ways: by providing expertise and enabling peer-support. In addition, it has also succeeded in legitimising local level climate action. Ambitious local level climate action can also affect the ambition of national climate policy, which in turn may reflect on the amount resources allocated to local climate action.