Browsing by Subject "palaminen"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Böttcher, Kristin; Paunu, Ville-Veikko; Kupiainen, Kaarle; Zhizhin, Mikhail; Matveev, Alexey; Savolahti, Mikko; Savolahti, Mikko; Klimont, Zbigniew; Väätäinen, Sampsa; Lamberg, Heikki; Karvosenoja, Niko (Elsevier, 2021)
    Atmospheric Environment 254 (2021), 118390
    Gas flaring in the oil and gas industry has been identified as an important source of anthropogenic black carbon (BC) affecting the climate, particularly in the Arctic. Our study provides spatially-explicit estimates of BC emissions from flaring in Russia utilising state-of-the-art methodology for determining the emission factors. We utilised satellite time series of the flared gas volume from Visible Infrared Imaging Radiometer Suite (VIIRS) for the period 2012 to 2017, supplemented with information on the gas and oil field type. BC emissions at flaring locations were calculated based on field type-specific emission factors, taking into account different gas compositions in each field type. We estimate that the average annual BC emissions from flaring in Russia were 68.3 Gg/year, with the largest proportion stemming from oil fields (82%). We observed a decrease in the yearly emissions during the period 2012 to 2017 with regional differences in the trend. Our results highlight the importance of detailed information on gas composition and the stage of oil and gas separation of the flared gas to reduce uncertainties in the BC emission estimates.
  • Lyytimäki, Jari (Springer, 2019)
    Clean Technologies and Environmental Policy 21, 1143–1153 (2019)
    One of the most widely accepted rule of thumb of bioenergy production has been that burning wet wood should be avoided. This advice has guided the development of harvesting, logistics and combustion of wood chips. However, experimentations in Finland have challenged this approach by showing that it may be possible to considerably improve the energy efficiency of heat and power plants by burning the wood chips as soon as possible after harvesting them from boreal forests. The high energy content of fresh wood has been known for a long time, but this knowledge has not been widely acknowledged as the guiding principle in the development of the energy use of wood chips. This study analyses public (non)debate of wood chip burning in Finland based on conceptualisations of non-recognition and discusses the implications of knowledge use and non-use for sustainable energy transitions. It is concluded that various forms of non-recognition can significantly hinder the development and implementation of more sustainable energy solutions. The importance of the varieties of ignorance and their societal consequences should not be forgotten from the sustainability transition studies.
  • Tissari, Jarkko; Väätäinen, Sampsa; Leskinen, Jani; Savolahti, Mikko; Lamberg, Heikki; Kortelainen, Miika; Karvosenoja, Niko; Sippula, Olli (MDPI, 2019)
    Atmosphere 2019; 10(12):775
    Sauna Stoves (SS) are simple wood combustion appliances used mainly in Nordic countries. They generate emissions that have an impact on air quality and climate. In this study, a new measurement concept for comparing the operation, thermal efficiency, and real-life fine particle and gaseous emissions of SS was utilized. In addition, a novel, simple, and universal emission calculation procedure for the determination of nominal emission factors was developed for which the equations are presented for the first time. Fine particle and gaseous concentrations from 10 different types of SS were investigated. It was found that each SS model was an individual in relation to stove performance: stove heating time, air-to-fuel ratio, thermal efficiency, and emissions. Nine-fold differences in fine particle mass (PM1) concentrations, and about 90-fold differences in concentrations of polycyclic aromatic hydrocarbons (PAH) were found between the SS, when dry (11% moisture content) birch wood was used. By using moist (18%) wood, particle number and carbon monoxide concentrations increased, but interestingly, PM1, PAH, and black carbon (BC) concentrations clearly decreased, when comparing to dry wood. E.g., PAH concentrations were 5.5–9.6 times higher with dry wood than with moist wood. Between wood species, 2–3-fold maximum differences in the emissions were found, whereas about 1.5-fold differences were observed between bark-containing and debarked wood logs. On average, the emissions measured in this study were considerably lower than in previous studies and emission inventories. This suggests that overall the designs of sauna stoves available on the market have improved during the 2010s. The findings of this study were used to update the calculation scheme behind the inventories, causing the estimates for total PM emissions from SS in Finland to decrease. However, wood-fired sauna stoves are still estimated to be the highest individual emission source of fine particles and black carbon in Finland.
  • Helsingin yliopisto, kulttuurien tutkimuksen laitos, kansatiede (Helsingin yliopisto, kulttuurien tutkimuksen laitos, kansatiede, 1986)
  • Kukkonen, Jaakko; López-Aparicio, Susana; Segersson, David; Geels, Camilla; Kangas, Leena; Kauhaniemi, Mari; Maragkidou, Androniki; Jensen, Anne; Assmuth, Timo; Karppinen, Ari; Sofiev, Mikhail; Hellén, Heidi; Riikonen, Kari; Nikmo, Juha; Kousa, Anu; Niemi, Jarkko V.; Karvosenoja, Niko; Santos, Gabriela Sousa; Sundvor, Ingrid; Im, Ulas; Christensen, Jesper H.; Nielsen, Ole-Kenneth; Plejdrup, Marlene S.; Nøjgaard, Jacob Klenø; Omstedt, Gunnar; Andersson, Camilla; Forsberg, Bertil; Brandt, Jørgen (European Geosciences Union, 2020)
    Atmospheric Chemistry and Physics 20 7 (2020)
    Residential wood combustion (RWC) is an important contributor to air quality in numerous regions worldwide. This study is the first extensive evaluation of the influence of RWC on ambient air quality in several Nordic cities. We have analysed the emissions and concentrations of PM2.5 in cities within four Nordic countries: in the metropolitan areas of Copenhagen, Oslo, and Helsinki and in the city of Umeå. We have evaluated the emissions for the relevant urban source categories and modelled atmospheric dispersion on regional and urban scales. The emission inventories for RWC were based on local surveys, the amount of wood combusted, combustion technologies and other relevant factors. The accuracy of the predicted concentrations was evaluated based on urban concentration measurements. The predicted annual average concentrations ranged spatially from 4 to 7 µg m−3 (2011), from 6 to 10 µg m−3 (2013), from 4 to more than 13 µg m−3 (2013) and from 9 to more than 13 µg m−3 (2014), in Umeå, Helsinki, Oslo and Copenhagen, respectively. The higher concentrations in Copenhagen were mainly caused by the relatively high regionally and continentally transported background contributions. The annual average fractions of PM2.5 concentrations attributed to RWC within the considered urban regions ranged spatially from 0 % to 15 %, from 0 % to 20 %, from 8 % to 22 % and from 0 % to 60 % in Helsinki, Copenhagen, Umeå and Oslo, respectively. In particular, the contributions of RWC in central Oslo were larger than 40 % as annual averages. In Oslo, wood combustion was used mainly for the heating of larger blocks of flats. In contrast, in Helsinki, RWC was solely used in smaller detached houses. In Copenhagen and Helsinki, the highest fractions occurred outside the city centre in the suburban areas. In Umeå, the highest fractions occurred both in the city centre and its surroundings.