Browsing by Subject "paleobiology"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Eyres, Alison; Eronen, Jussi T.; Hagen, Oskar; Boehning-Gaese, Katrin; Fritz, Susanne A. (2021)
    Climatic niches describe the climatic conditions in which species can persist. Shifts in climatic niches have been observed to coincide with major climatic change, suggesting that species adapt to new conditions. We test the relationship between rates of climatic niche evolution and paleoclimatic conditions through time for 65 Old-World flycatcher species (Aves: Muscicapidae). We combine niche quantification for all species with dated phylogenies to infer past changes in the rates of niche evolution for temperature and precipitation niches. Paleoclimatic conditions were inferred independently using two datasets: a paleoelevation reconstruction and the mammal fossil record. We find changes in climatic niches through time, but no or weak support for a relationship between niche evolution rates and rates of paleoclimatic change for both temperature and precipitation niche and for both reconstruction methods. In contrast, the inferred relationship between climatic conditions and niche evolution rates depends on paleoclimatic reconstruction method: rates of temperature niche evolution are significantly negatively related to absolute temperatures inferred using the paleoelevation model but not those reconstructed from the fossil record. We suggest that paleoclimatic change might be a weak driver of climatic niche evolution in birds and highlight the need for greater integration of different paleoclimate reconstructions.
  • Fraser, Danielle; Soul, Laura C.; Tóth, Anikó B.; Balk, Meghan A.; Eronen, Jussi T.; Pineda-Munoz, Silvia; Shupinski, Alexandria B.; Villaseñor, Amelia; Barr, W. Andrew; Behrensmeyer, Anna K.; Du, Andrew; Faith, J. Tyler; Gotelli, Nicholas J.; Graves, Gary R.; Jukar, Advait M.; Looy, Cindy V.; Miller, Joshua H.; Potts, Richard; Lyons, S. Kathleen (2021)
    Recent renewed interest in using fossil data to understand how biotic interactions have shaped the evolution of life is challenging the widely held assumption that long-term climate changes are the primary drivers of biodiversity change. New approaches go beyond traditional richness and co-occurrence studies to explicitly model biotic interactions using data on fossil and modern biodiversity. Important developments in three primary areas of research include analysis of (i) macroevolutionary rates, (ii) the impacts of and recovery from extinction events, and (iii) how humans (Homo sapiens) affected interactions among non-human species. We present multiple lines of evidence for an important and measurable role of biotic interactions in shaping the evolution of communities and lineages on long timescales.