Browsing by Subject "peatlands"

Sort by: Order: Results:

Now showing items 1-20 of 40
  • Westman, Carl Johan; Starr, Michael; Laine, Jukka (Suomen metsätieteellinen seura, 1985)
  • Grammatikopoulou, Ioanna; Artell, Janne; Hjerppe, Turo; Pouta, Eija (Springer Link, 2020)
    Environmental and Resource Economics 77, 615–639
    Studies on the public’s implicit discount rate in the willingness to pay for environmental amenities have mostly employed contingent valuation surveys. We investigate respondents’ time preferences using choice experiments with four payment schedules in a split-sample design in the context of mire conservation. We first examine preference and taste heterogeneity among respondents, finding them to a large extent independent of payment schedules. Next we use an endogenous approach to jointly estimate the implicit discount rates and preferences using choice experiments data. We explore exponential and hyperbolic discounting model specifications. We find insensitivity to the length of the payment period and support for hyperbolic discounting. Furthermore, we provide policy relevant valuation results concerning mire conservation.
  • Arroyo-Mora, J. Pablo; Kalacska, Margaret; Soffer, Raymond J.; Moore, Tim R.; Roulet, Nigel T.; Juutinen, Sari; Ifimov, Gabriela; Leblanc, George; Inamdar, Deep (2018)
    Peatlands cover a large area in Canada and globally (12% and 3% of the landmass, respectively). These ecosystems play an important role in climate regulation through the sequestration of carbon dioxide from, and the release of methane to, the atmosphere. Monitoring approaches, required to understand the response of peatlands to climate change at large spatial scales, are challenged by their unique vegetation characteristics, intrinsic hydrological complexity, and rapid changes over short periods of time (e.g., seasonality). In this study, we demonstrate the use of multitemporal, high spatial resolution (1 m(2)) hyperspectral airborne imagery (Compact Airborne Spectrographic Imager (CASI) and Shortwave Airborne Spectrographic Imager (SASI) sensors) for assessing maximum instantaneous gross photosynthesis (PGmax) in hummocks, and gravimetric water content (GWC) and carbon uptake efficiency in hollows, at the Mer Bleue ombrotrophic bog. We applied empirical models (i.e., in situ data and spectral indices) and we derived spatial and temporal trends for the aforementioned variables. Our findings revealed the distribution of hummocks (51.2%), hollows (12.7%), and tree cover (33.6%), which is the first high spatial resolution map of this nature at Mer Bleue. For hummocks, we found growing season PGmax values between 8 mu mol m(-2) s(-1) and 12. tmol m(-2) s(-1) were predominant (86.3% of the total area). For hollows, our results revealed, for the first time, the spatial heterogeneity and seasonal trends for gravimetric water content and carbon uptake efficiency for the whole bog.
  • Sarkkola, Sakari; Alenius, Virpi; Hökkä, Hannu; Laiho, Raija; Päivänen, Juhani; Penttilä, Timo (NRC Canada, 2003)
    Size-structural dynamics of naturally established Norway spruce (Picea abies (L.) Karst.) stands growing on peatlands drained for forestry were investigated. The study was based on modelling of diameter at breast height (DBH) distributions of repeatedly measured stands in southern Finland. The Weibull function was used to parameterize the DBH distributions and mixed linear models were constructed to characterize the impacts of different ecological factors on stand dynamics. Initially, the positive skewness of the DBH distributions increased after drainage as a result of increases in stem numbers and a reduction in mean diameters. Simultaneously, the size inequality among trees increased. These changes were due to regeneration and (or) ingrowth and indicated only little competition from the larger trees. Subsequently, the DBH distributions changed from positively skewed to normal and finally to negatively skewed resulting from tree growth and a reduction in the number of small DBH trees. This indicated increased asymmetric intertree competition. Size inequality did not change during this later stage in stand development, suggesting a concurrent component of symmetric competition. Thinnings had little impact on DBH distribution trends. The observed stand dynamics allow the allocation of growth resources to the desired crop component by appropriate silvicultural treatments.
  • Bhattacharjee, Joy; Marttila, Hannu; Launiainen, Samuli; Lepistö, Ahti; Kløve, Bjørn (Elsevier, 2021)
    Science of The Total Environment 779 (2021), 146419
    Maintaining and improving surface water quality requires knowledge of nutrient and sediment loads due to past and future land-use practices, but historical data on land cover and its changes are often lacking. In this study, we tested whether land-use-specific export coefficients can be used together with satellite images (Landsat) and/or regional land-use statistics to estimate riverine nutrient loads and concentrations of total nitrogen (TN), total phosphorus (TP), and suspended solids (SS). The study area, Simojoki (3160 km2) in northern Finland, has been intensively drained for peatland forestry since the 1960s. We used different approaches at multiple sub-catchment scales to simulate TN, TP, and SS export in the Simojoki catchment. The uncertainty in estimates based on specific export coefficients was quantified based on historical land-use changes (derived from Landsat data), and an uncertainty boundary was established for each land-use. The uncertainty boundary captured at least 60% of measured values of TN, TP, and SS loads or concentrations. However, the uncertainty in estimates compared with measured values ranged from 7% to 20% for TN, 0% to 18% for TP, and 13% to 43% for SS for different catchments. Some discrepancy between predicted and measured loads and concentrations was expected, as the method did not account for inter-annual variability in hydrological conditions or river processes. However, combining historical land-use change estimates with simple export coefficients can be a practical approach for evaluating the influence on water quality of historical land-use changes such as peatland drainage for forest establishment.
  • Kastovska, Eva; Strakova, Petra; Edwards, Keith; Urbanova, Zuzana; Barta, Jiri; Mastny, Jiri; Santruckova, Hana; Picek, Tomas (2018)
    Peatlands are large repositories of carbon (C). Sphagnum mosses play a key role in C sequestration, whereas the presence of vascular plants is generally thought to stimulate peat decomposition. Recent studies stress the importance of plant species for peat quality and soil microbial activity. Thus, learning about specific plant-microbe-soil relations and their potential feedbacks for C and nutrient cycling are important for a correct understanding of C sequestration in peatlands and its potential shift associated with vegetation change. We studied how the long-term presence of blueberry and cotton-grass, the main vascular dominants of spruce swamp forests, is reflected in the peat characteristics, soil microbial biomass and activities, and the possible implications of their spread for nutrient cycling and C storage in these systems. We showed that the potential effect of vascular plants on ecosystem functioning is species specific and need not necessarily result in increased organic matter decomposition. Although the presence of blueberry enhanced phosphorus availability, soil microbial biomass and the activities of C-acquiring enzymes, cotton-grass strongly depleted phosphorus and nitrogen from the peat. The harsh conditions and prevailing anoxia retarded the decomposition of cotton-grass litter and caused no significant enhancement in microbial biomass and exoenzymatic activity. Therefore, the spread of blueberry in peatlands may stimulate organic matter decomposition and negatively affect the C sequestration process, whereas the potential spread of cotton-grass would not likely change the functioning of peatlands as C sinks.
  • Saarilahti, Martti (Suomen metsätieteellinen seura, 1988)
  • Seppälä, Kustaa (Suomen metsätieteellinen seura, 1972)
  • Starr, Michael; Westman, Carl Johan (Suomen metsätieteellinen seura, 1978)
  • Silvola, Jouko; Välijoki, Jukka; Aaltonen, Heikki (Suomen metsätieteellinen seura, 1985)
    At sites in SE Finland, hourly respiration varied mainly in the range 100-500 mg CO2/msuperscript 2 with changes following those in soil surface temp. with a time lag of 3 h. After groundwater table was reduced by about 0.5 m, respiration increased 2.5-fold (resulting in a rate of peat decomposition considerably in excess of the rate of production of new organic matter in the peat). Application of fast-dissolving PK or urea rapidly increased soil respiration at the site poorest in nutrients. Ash gave the greatest steady increase. At sites rich in nutrients, fertilizer treatment reduced soil respiration for 1-2 yr. Treatment with micronutrients caused an intial reduction in respiration followed by a pronounced increase.
  • Westman, Carl Johan (Suomen metsätieteellinen seura, 1981)
  • Laine, Anna M.; Lindholm, Tapio; Nilsson, Mats; Kutznetsov, Oleg; Jassey, Vincent E. J.; Tuittila, Eeva-Stiina (John Wiley & Sons Ltd, 2021)
    Journal of Ecology 109, 4 (2021), 1774–1789
    1. Most of the carbon accumulated into peatlands is derived from Sphagnum mosses. During peatland development, the relative share of vascular plants and Sphagnum mosses in the plant community changes, which impacts ecosystem functions. Little is known on the successional development of functional plant traits or functional diversity in peatlands, although this could be a key for understanding the mechanisms behind peatland resistance to climate change. Here we aim to assess how functionality of successive plant communities change along the autogenic peatland development and the associated environmental gradients, namely peat thickness and pH, and to determine whether trait trade-offs during peatland succession are analogous between vascular plant and moss communities. 2. We collected plant community and trait data on successional peatland gradients from post-glacial rebound areas in coastal Finland, Sweden and Russia, altogether from 47 peatlands. This allowed us to analyse the changes in community-weighted mean trait values and functional diversity (diversity of traits) during peatland development. 3. Our results show comparative trait trade-offs from acquisitive species to conservative species in both vascular plant and Sphagnum moss communities during peatland development. However, mosses had higher resistance to environmental change than vascular plant communities. This was seen in the larger proportion of intraspecific trait variation than species turnover in moss traits, while the proportions were opposite for vascular plants. Similarly, the functional diversity of Sphagnum communities increased during the peatland development, while the opposite occurred for vascular plants. Most of the measured traits showed a phylogenetic signal. More so, the species common to old successional stages, namely Ericacae and Sphagna from subgroup Acutifolia were detected as most similar to their phylogenetic neighbours. 4. Synthesis. During peatland development, vegetation succession leads to the dominance of conservative plant species accustomed to high stress. At the same time, the autogenic succession and ecological engineering of Sphagna leads to higher functional diversity and intraspecific variability, which together indicate higher resistance towards environmental perturbations.
  • Heikurainen, Leo; Päivänen, Juhani; Sarasto, Juhani (Suomen metsätieteellinen seura, 1964)
  • Menberu, Meseret Walle; Marttila, Hannu; Ronkanen, Anna-Kaisa; Haghighi, Ali Torabi; Kløve, Bjørn (American Geophysical Union, 2021)
    Water Resources Research 57, e2020WR028624
    Undisturbed peatlands are effective carbon sinks and provide a variety of ecosystem services. However, anthropogenic disturbances, especially land drainage, strongly alter peat soil properties and jeopardize the benefits of peatlands. The effects of disturbances should therefore be assessed and predicted. To support accurate modeling, this study determined the physical and hydraulic properties of intact and disturbed peat samples collected from 59 sites (in total 3,073 samples) in Finland and Norway. The bulk density (BD), porosity, and specific yield (Sy) values obtained indicated that the top layer (0–30 cm depth) at agricultural and peat extraction sites was most affected by land use change. The BD in the top layer at agricultural, peat extraction, and forestry sites was 441%, 140%, and 92% higher, respectively, than that of intact peatlands. Porosity decreased with increased BD, but not linearly. Agricultural and peat extraction sites had the lowest saturated hydraulic conductivity, Sy, and porosity, and the highest BD of the land use options studied. The van Genuchten-Mualem (vGM) soil water retention curve (SWRC) and hydraulic conductivity (K) models proved to be applicable for the peat soils tested, providing values of SWRC, K, and vGM-parameters (α and n) for peat layers (top, middle and bottom) under different land uses. A decrease in peat soil water content of ≥10% reduced the unsaturated K values by two orders of magnitude. This unique data set can be used to improve hydrological modeling in peat-dominated catchments and for fuller integration of peat soils into large-scale hydrological models.
  • Päivänen, Juhani (Suomen metsätieteellinen seura, 1973)
  • Mälkönen, Eino; Paavilainen, Eero (Suomen metsätieteellinen seura, 1985)
  • Boxström, Agneta (Helsingin yliopisto, 2021)
    Abstract: Northern boreal peatlands form one of the biggest carbon pools in the biosphere, thus having great potential to cause major changes to the global carbon cycle. The ongoing recent warming may affect the carbon dynamics though factors, such as, vegetation, hydrology and permafrost balance. As the future is still uncertain there are no definitive answers on how the peatlands will react in the future. Fortunately, moisture sensitive organisms such as, bryophytes and testate amoeba is preserved in the peat and can therefore be used to reconstruct past climatic shifts. In this thesis I studied palaeohydrology and peat accumulation over the last two millennia, from three peat cores originating in a permafrost peatland in Rogovaya, Russia. I used testate amoeba as a proxy of past moisture conditions and plotted the taxa composition of each core against 14C and 210Pb dated samples, to reconstruct past moisture shifts. The results were also supplemented by plant macrofossil and carbon accumulation data for more robust results. Of the three cores, Rog11 provided the oldest testate amoeba dataset by reaching the Dark Ages Cold Period. During this period there were indications of dry moisture conditions followed by a wet Medieval Warm Period. The Little Ice Age gave indications of a drying trend, while toward the end of the LIA Rog8 indicated opposite moisture conditions. From the end of the LIA onwards a general trend of drying and increased carbon accumulated is noted. Yet, during the last decade the trend has turned. The wet shift might indicate that the threshold for the peatland has been reached and the amount of melting permafrost has exceeded the evapotranspiration rate. As a conclusion my result indicates that the dynamics of both hydrology and carbon are complicated processes affected by both autogenic and allogenic factors, therefore causing large variability even on a local scale. The absence of widely spread observations of the most recent wet shift also indicates that the response of the peatland to the recent warming might be unequal. To rectify this situation, continued research is crucial, so that we can increase our understanding of climate-peatland interactions.