Browsing by Subject "photosynthesis"

Sort by: Order: Results:

Now showing items 1-20 of 45
  • Hari, Pertti; Salminen, Raimo; Pelkonen, Paavo; Huhtamaa, Mikko; Pohjonen, Veli (Suomen metsätieteellinen seura, 1976)
  • Arroyo-Mora, J. Pablo; Kalacska, Margaret; Soffer, Raymond J.; Moore, Tim R.; Roulet, Nigel T.; Juutinen, Sari; Ifimov, Gabriela; Leblanc, George; Inamdar, Deep (2018)
    Peatlands cover a large area in Canada and globally (12% and 3% of the landmass, respectively). These ecosystems play an important role in climate regulation through the sequestration of carbon dioxide from, and the release of methane to, the atmosphere. Monitoring approaches, required to understand the response of peatlands to climate change at large spatial scales, are challenged by their unique vegetation characteristics, intrinsic hydrological complexity, and rapid changes over short periods of time (e.g., seasonality). In this study, we demonstrate the use of multitemporal, high spatial resolution (1 m(2)) hyperspectral airborne imagery (Compact Airborne Spectrographic Imager (CASI) and Shortwave Airborne Spectrographic Imager (SASI) sensors) for assessing maximum instantaneous gross photosynthesis (PGmax) in hummocks, and gravimetric water content (GWC) and carbon uptake efficiency in hollows, at the Mer Bleue ombrotrophic bog. We applied empirical models (i.e., in situ data and spectral indices) and we derived spatial and temporal trends for the aforementioned variables. Our findings revealed the distribution of hummocks (51.2%), hollows (12.7%), and tree cover (33.6%), which is the first high spatial resolution map of this nature at Mer Bleue. For hummocks, we found growing season PGmax values between 8 mu mol m(-2) s(-1) and 12. tmol m(-2) s(-1) were predominant (86.3% of the total area). For hollows, our results revealed, for the first time, the spatial heterogeneity and seasonal trends for gravimetric water content and carbon uptake efficiency for the whole bog.
  • Hari, Pertti; Kanninen, Markku; Kellomäki, Seppo; Luukkanen, Olavi; Pelkonen, Paavo; Salminen, Raimo; Smolander, Heikki (Suomen metsätieteellinen seura, 1979)
  • Väisänen, Eero; Kellomäki, Seppo; Hari, Pertti (Suomen metsätieteellinen seura, 1977)
  • Kellomäki, Seppo; Hari, Pertti; Väisänen, Eero (Suomen metsätieteellinen seura, 1977)
  • Dong, Tingfa; Duan, Baoli; Korpelainen, Helena; Niinemets, Ulo; Li, Chunyang (2019)
    Following asymmetric pruning of leaves and/or roots, the functional balance of distribution of carbon, but not of nitrogen, in Cunninghamia lanceolata is more readily achieved for the roots and leaves on the same side of the pruning compared with those on the opposite side. Abstract The functional balance between leaves and roots is believed to be mediated by the specific location of shoots and roots, i.e. differences in transport distances and degrees of organ connectivity. However, it remains unknown whether the adaptive responses of trees to biomass removal depend on the relative orientation of leaf and root pruning. Here, we applied five pruning treatments to saplings of Cunninghamia lanceolata (Chinese fir) under field and glasshouse conditions, namely no pruning (control), half of lateral branches pruned, half of lateral roots pruned, half of the branches and roots pruned on the same side of the plant, and half of the branches and roots pruned on opposite sides of the plant. The effects of pruning on the growth, carbon storage and allocation, and physiology of leaves and fine roots on the same and opposite sides of the plant were investigated. Compared with the effect of root-pruning on leaves, fine roots were more limited by carbon availability and their physiological activity was more strongly reduced by shoot pruning, especially when branches on the same side of the plant were removed. Pruning of branches and roots on the opposite side of the plant resulted in the lowest carbon assimilation rates and growth among all treatments. The results of a stable-isotope labeling indicated that less C was distributed to fine roots from the leaves on the opposite side of the plant compared to those on the same side, but N allocation from roots to leaves depended less on the relative root and leaf orientation. The results collectively indicate that the functional responses of C. lanceolata to pruning are not only determined by the source-sink balance model but are also related to interactions between leaves and fine roots. We argue that the connectivity among lateral branches and roots depends on their relative orientation, which is therefore critical for the functional balance between leaves and fine roots.
  • Salmon, Yann; Torres-Ruiz, Jose M.; Poyatos, Rafael; Martinez-Vilalta, Jordi; Meir, Patrick; Cochard, Herve; Mencuccini, Maurizio (2015)
    Understanding physiological processes involved in drought-induced mortality is important for predicting the future of forests and for modelling the carbon and water cycles. Recent research has highlighted the variable risks of carbon starvation and hydraulic failure in drought-exposed trees. However, little is known about the specific responses of leaves and supporting twigs, despite their critical role in balancing carbon acquisition and water loss. Comparing healthy (non-defoliated) and unhealthy (defoliated) Scots pine at the same site, we measured the physiological variables involved in regulating carbon and water resources. Defoliated trees showed different responses to summer drought compared with non-defoliated trees. Defoliated trees maintained gas exchange while non-defoliated trees reduced photosynthesis and transpiration during the drought period. At the branch scale, very few differences were observed in non-structural carbohydrate concentrations between health classes. However, defoliated trees tended to have lower water potentials and smaller hydraulic safety margins. While non-defoliated trees showed a typical response to drought for an isohydric species, the physiology appears to be driven in defoliated trees by the need to maintain carbon resources in twigs. These responses put defoliated trees at higher risk of branch hydraulic failure and help explain the interaction between carbon starvation and hydraulic failure in dying trees.
  • Kemppinen, Jasmin (Helsingin yliopisto, 2020)
    Reactive oxygen species (ROS) are one of the prominent groups of signal compounds that are produced in stress conditions such as excess light. Nuclear protein RADICAL-INDUCED CELL DEAT (RCD1) is sensitive to ROS and controls the expression of organelle components, e.g. mitochondrial alternative oxidases (AOX), thus balancing the redox-status of a plant cell. Plants have fast responses to fluctuating light conditions that happen even before gene expression: i.e. readjusting the capability to receive light energy between the two photosystems by state transitions and increasing the capacity to remove excess energy by non-photochemical quenching (NPQ). Various small auxiliary proteins function in these fast acclimation events. However, many of them are identified on gene level only. The goal of this master’s thesis is to describe the role of a hypothetical protein, PPD8 in Arabidopsis thaliana. We evaluate how PPD8 is associated with RCD1 and a chloroplast thiol-regulator enzyme NTRC. We created double (rcd1 ppd8) and triple mutant plant lines (rcd1 ppd8 ntrc) by crossing single knockout lines ppd8, rcd1 and ntrc. Photosynthetic performance, NPQ and sensitivity to ROS were observed in each line by using two different chlorophyll fluorescence measurement methods: pulse-amplitude-modulation (PAM) and novel OJIP imaging fluorometry. The leaves were exposed to methyl viologen (MV), which accelerates the chloroplastic ROS production in light, and also to hypoxic conditions in order to study how the effect of MV is altered in low concentrations of oxygen. Additionally, we examined the amount of photosynthetic proteins and stoichiometry of photosystems in ppd8, rcd1 and rcd1 ppd8 by immunological methods. Finally, PPD8 gene with attached hemagglutinin encoding tags was generated by cloning and reintroduced back to the ppd8 knockout lines. Plants lacking RCD1 are very tolerant against MV and ROS, but when rcd1 was crossed with ppd8 the resistance was suppressed. Both rcd1 ppd8 and ppd8 exhibited elevated chlorophyll fluorescence and NPQ values. The removal of PPD8 gene had an impact on the abundance and the stoichiometry of photosynthetic proteins reducing the plants’ performance. When RCD1, PPD8 and NTRC were simultaneously absent the plants had major defects: their NPQ and fluorescence values were drastically increased. Furthermore, several results hinted towards possible issues in the function of ATP synthase in ppd8 background plants. It is also known that NTRC regulates ATP synthase: taken together, the results suggest that PPD8 is necessary for a fully operative ATP synthase and photosynthetic machinery. By reintroducing PPD8 to knockout line ppd8, the phenotype could be reverted back to wild type -like, thus confirming the significance of the PPD8 gene product in plant.
  • Zheng, Shuyu; Poczai, Peter; Hyvönen, Jaakko; Tang, Jing; Amiryousefi, Ali (2020)
    Understanding the complexity of genomic structures and their unique architecture is linked with the power of visualization tools used to represent these features. Such tools should be able to provide a realistic and scalable version of genomic content. Here, we present an online organelle plotting tool focused on chloroplasts, which were developed to visualize the exclusive structure of these genomes. The distinguished unique features of this program include its ability to represent the Single Short Copy (SSC) regions in reverse complement, which allows the depiction of the codon usage bias index for each gene, along with the possibility of the minor mismatches between inverted repeat (IR) regions and user-specified plotting layers. The versatile color schemes and diverse functionalities of the program are specifically designed to reflect the accurate scalable representation of the plastid genomes. We introduce a Shiny app website for easy use of the program; a more advanced application of the tool is possible by further development and modification of the downloadable source codes provided online. The software and its libraries are completely coded in R, available at https://irscope.shinyapps.io/chloroplot/.
  • Yi, Chuixiang; Ricciuto, Daniel; Li, Runze; Wolbeck, John; Xu, Xiyan; Nilsson, Mats; Aires, Luis; Albertson, John D.; Ammann, Christof; Arain, M. Altaf; de Araujo, Alessandro C.; Aubinet, Marc; Aurela, Mika; Barcza, Zoltan; Barr, Alan; Berbigier, Paul; Beringer, Jason; Bernhofer, Christian; Black, Andrew T.; Bolstad, Paul V.; Bosveld, Fred C.; Broadmeadow, Mark S. J.; Buchmann, Nina; Burns, Sean P.; Cellier, Pierre; Chen, Jiquan; Ciais, Philippe; Clement, Robert; Cook, Bruce D.; Curtis, Peter S.; Dail, D. Bryan; Dellwik, Ebba; Delpierre, Nicolas; Desai, Ankur R.; Dore, Sabina; Dragoni, Danilo; Drake, Bert G.; Dufrene, Eric; Dunn, Allison; Elbers, Jan; Eugster, Werner; Falk, Matthias; Feigenwinter, Christian; Flanagan, Lawrence B.; Foken, Thomas; Frank, John; Fuhrer, Juerg; Gianelle, Damiano; Goldstein, Allen; Goulden, Mike; Granier, Andre; Gruenwald, Thomas; Gu, Lianhong; Guo, Haiqiang; Hammerle, Albin; Han, Shijie; Hanan, Niall P.; Haszpra, Laszlo; Heinesch, Bernard; Helfter, Carole; Hendriks, Dimmie; Hutley, Lindsay B.; Ibrom, Andreas; Jacobs, Cor; Johansson, Torbjoern; Jongen, Marjan; Katul, Gabriel; Kiely, Gerard; Klumpp, Katja; Knohl, Alexander; Kolb, Thomas; Kutsch, Werner L.; Lafleur, Peter; Laurila, Tuomas; Leuning, Ray; Lindroth, Anders; Liu, Heping; Loubet, Benjamin; Manca, Giovanni; Marek, Michal; Margolis, Hank A.; Martin, Timothy A.; Massman, William J.; Matamala, Roser; Matteucci, Giorgio; McCaughey, Harry; Merbold, Lutz; Meyers, Tilden; Migliavacca, Mirco; Miglietta, Franco; Misson, Laurent; Moelder, Meelis; Moncrieff, John; Monson, Russell K.; Montagnani, Leonardo; Montes-Helu, Mario; Moors, Eddy; Moureaux, Christine; Mukelabai, Mukufute M.; Munger, J. William; Myklebust, May; Nagy, Zoltan; Noormets, Asko; Oechel, Walter; Oren, Ram; Pallardy, Stephen G.; Kyaw, Tha Paw U.; Pereira, Joao S.; Pilegaard, Kim; Pinter, Krisztina; Pio, Casimiro; Pita, Gabriel; Powell, Thomas L.; Rambal, Serge; Randerson, James T.; von Randow, Celso; Rebmann, Corinna; Rinne, Janne; Rossi, Federica; Roulet, Nigel; Ryel, Ronald J.; Sagerfors, Jorgen; Saigusa, Nobuko; Sanz, Maria Jose; Mugnozza, Giuseppe-Scarascia; Schmid, Hans Peter; Seufert, Guenther; Siqueira, Mario; Soussana, Jean-Francois; Starr, Gregory; Sutton, Mark A.; Tenhunen, John; Tuba, Zoltan; Tuovinen, Juha-Pekka; Valentini, Riccardo; Vogel, Christoph S.; Wang, Shaoqiang; Wang, Weiguo; Welp, Lisa R.; Wen, Xuefa; Wharton, Sonia; Wilkinson, Matthew; Williams, Christopher A.; Wohlfahrt, Georg; Yamamoto, Susumu; Yu, Guirui; Zampedri, Roberto; Zhao, Bin; Zhao, Xinquan (2010)
  • Wang, Fang; Robson, T Matthew; Casal, Jorge J; Aphalo, Pedro J. (2020)
    The UV-A/blue photoreceptors phototropins and cryptochromes are both known to contribute to stomatal opening (∆gs) in blue light. However, their relative contributions to maintenance of gs in blue light through the whole photoperiod remains unknown. To elucidate this question, Arabidopsis phot1 phot2 and cry1 cry2 mutants (MTs) and their respective wild types (WTs) were irradiated with 200 μmol m-2 s-1 of blue-, green- or red-light (BL, GL or RL) throughout a 11-hour photoperiod. Stomatal conductance (gs) was higher under BL, than under RL or GL. Under RL, gs was not affected by either of the photoreceptor mutations, but under GL gs was slightly lower in cry1 cry2 than its WT. Under BL, the presence of phototropins was essential for rapid stomatal opening at the beginning of the photoperiod, while maximal stomatal opening beyond 3 h of irradiation required both phototropins and cryptochromes. Time courses of whole-plant net carbon assimilation rate (Anet) and the effective quantum yield of photosystem II photochemistry (ΦPSII) were consistent with an Anet-independent contribution of BL on gs both in phot1 phot2 and cry1 cry2 mutants. The changing roles of phototropins and cryptochromes through the day may allow more flexible coordination between gs and Anet.
  • Magney, Troy S.; Frankenberg, Christian; Kohler, Philipp; North, Gretchen; Davis, Thomas S.; Dold, Christian; Dutta, Debsunder; Fisher, Joshua B.; Grossmann, Katja; Harrington, Alexis; Hatfield, Jerry; Stutz, Jochen; Sun, Ying; Porcar-Castell, Albert (2019)
    Novel satellite measurements of solar-induced chlorophyll fluorescence (SIF) can improve our understanding of global photosynthesis; however, little is known about how to interpret the controls on its spectral variability. To address this, we disentangle simultaneous drivers of fluorescence spectra by coupling active and passive fluorescence measurements with photosynthesis. We show empirical and mechanistic evidence for where, why, and to what extent leaf fluorescence spectra change. Three distinct components explain more than 95% of the variance in leaf fluorescence spectra under both steady-state and changing illumination conditions. A single spectral shape of fluorescence explains 84% of the variance across a wide range of species. The magnitude of this shape responds to absorbed light and photosynthetic up/down regulation; meanwhile, chlorophyll concentration and nonphotochemical quenching control 9% and 3% of the remaining spectral variance, respectively. The spectral shape of fluorescence is remarkably stable where most current satellite retrievals occur (far-red, >740nm), and dynamic downregulation of photosynthesis reduces fluorescence magnitude similarly across the 670- to 850-nm range. We conduct an exploratory analysis of hourly red and far-red canopy SIF in soybean, which shows a subtle change in red:far-red fluorescence coincident with photosynthetic downregulation but is overshadowed by longer-term changes in canopy chlorophyll and structure. Based on our leaf and canopy analysis, caution should be taken when attributing large changes in the spectral shape of remotely sensed SIF to plant stress, particularly if data acquisition is temporally sparse. Ultimately, changes in SIF magnitude at wavelengths greater than 740 nm alone may prove sufficient for tracking photosynthetic dynamics. Plain Language Summary Satellite remote sensing provides a global picture of photosynthetic activity-allowing us to see when, where, and how much CO2 plants are assimilating. To do this, satellites measure a small emission of energy from the plants called chlorophyll fluorescence. However, this measurement is typically made across a narrow wavelength range, while the emission spectrum (650-850 nm) is quite dynamic. We show where, why, and to what extent leaf fluorescence spectra change across a diverse range of species and conditions, ultimately informing canopy remote sensing measurements. Results suggest that wavelengths currently used by satellites are stable enough to track the downregulation of photosynthesis resulting from stress, while spectral shape changes respond more strongly to dynamics in canopy structure and chlorophyll concentration.
  • Kellomäki, Seppo; Hari, Pertti (Suomen metsätieteellinen seura, 1980)
  • Kellomäki, Seppo; Kanninen, Markku (Suomen metsätieteellinen seura, 1980)
  • Pukkala, Timo; Kuuluvainen, Timo (Suomen metsätieteellinen seura, 1987)
  • Kellomäki, Seppo; Puttonen, Pasi; Tamminen, Heikki; Westman, Carl Johan (Suomen metsätieteellinen seura, 1982)
  • Hallman, Erkki; Hari, Pertti; Räsänen, Pentti K.; Smolander, Heikki (Suomen metsätieteellinen seura, 1978)
  • Södervik, Ilona; Nousiainen, Maija; Koponen, Ismo (2021)
    The purpose of this study is to increase the understanding about undergraduate life science students’ conceptions concerning the role of photosynthesizing plants in the ecosystem, utilizing a network analysis method. Science learning requires the integration and linking of abstract and often counterintuitive concepts successfully into multifaceted networks. The quality of these networks, together with their abilities to communicate via the language of science, influences students’ success in academic, verbal problem-solving tasks. This study contributes to investigating students’ understanding, utilizing a modern network analysis method in exploring first-year university life science students’ written answers. In this study, a total of 150 first-year life science students answered two open-ended tasks related to the role of photosynthesizing plants in the ecosystem. A network analysis tool was used in exploring the occurrence of different-level science concepts and the interrelatedness between these concepts in students’ verbal outputs. The results showed that the richness of concept networks and students’ use of macro-concepts were remarkably varied between the tasks. Higher communicability measures were connected to the more abundant existence of macro-concepts in the task concerning the role of plants from the food-chain perspective. In the answers for the task concerning the role of plants regarding the atmosphere, the students operated mainly with single facts, and there were only minor interconnections made between the central concepts. On the basis of these results, the need for more all-encompassing biology teaching concerning complex environmental and socio-economic problems became evident. Thus, methodological and pedagogical contributions are discussed.
  • Wasonga, Daniel; Kleemola, Jouko; Alakukku, Laura; Mäkelä, Pirjo (2020)
    Cassava (Manihot esculenta Crantz) experiences intermittent water deficit and suffers from potassium (K) deficiency that seriously constrains its yield in the tropics. Currently, the interaction effect between deficit irrigation and K fertigation on growth and yield of cassava is unknown, especially during the early growth phase. Therefore, pot experiments were conducted under controlled greenhouse conditions using cassava cuttings. Treatments initiated at 30 days after planting included three irrigation doses (30%, 60%, 100% pot capacity) and five K (0.01, 1, 4, 16, and 32 mM) concentrations. The plants were harvested 90 days after planting. Decreasing irrigation dose to 30% together with 16 mM K lowered the leaf water potential by 69%, leaf osmotic potential by 41%, photosynthesis by 35%, stomatal conductance by 41%, water usage by 50%, leaf area by 17%, and whole-plant dry mass by 41%, compared with full-irrigated plants. Lowering the K concentration below 16 mM reduced the values further. Notably, growth and yield were decreased the least compared with optimal, when irrigation dose was decreased to 60% together with 16 mM K. The results demonstrate that deficit irrigation strategies could be utilized to develop management practices to improve cassava productivity by means of K fertigation under low moisture conditions.