Browsing by Subject "prolyl oligopeptidase"

Sort by: Order: Results:

Now showing items 1-6 of 6
  • Huovila, Tiina (Helsingfors universitet, 2017)
    Autophagy is a pathway for cells to degrade intracellular components that are no longer needed or are detrimental for the cells. It is essential for cell homeostasis and survival and has been related to various diseases and pathophysiology. Autophagy is a complex process and there are still several unclear und unknown aspects to it. Regulation of autophagy is essential to prevent unwanted and escess activation, and several pathways and molecules, both stimulatory and inhibitory, are included. Different signaling pathways are sensitive to a variety of environmental clues. Two main autophagy pathways are mTOR-dependent pathway and mTOR-independent pathway. Induction of autophagy in the latter pathway is dependent on the interaction of Bcl-2 and Beclin 1. Prolyl oligopeptidase (PREP) is a peptidase enzyme that has several substrates. PREP-inhibition by KYP-2047 can reduce aggregation of α-synuclein in two ways: by increasing rate of autophagy and by decreasing dimerization. The aim of this study was to find out how PREP affects the interaction between Bcl-2 and Beclin 1 and how this affects autophagy. Based on previous studies, PREP-inhibition seems to increase the amount of Beclin 1 and to affect the phosphorylation of Bcl-2 and Beclin 1, leading to dissociation of the complex. Hypothesis was to see differences in colocalization of Bcl-2 and Beclin 1 in cells treated with different PREP-modifications and for PREP-inhibition to decrease the colocalization. Human embryonic kidney cells 293 (HEK-293) and hPREP knockout cell line created from them by using CRISPR/Cas9-silencing were used in the experiments. Two experiments were performed on regular HEK-cells: inhibitor experiment with KYP-2047 (1 or 10 µM) and overexpression experiment (transfection with either active or inactive hPREP plasmid). After immunofluorescence staining, cells were analysed with confocal microscope and colocation analysis of Bcl-2 and Beclin 1 was performed. The intensity of Beclin 1 in the nuclei was stronger than in other parts of the cell in all samples, which could indicate a stronger activity of its nuclear tasks compared to autophagy. However, the antibody used for immunofluorescence has most likely caused this staining pattern. Based on previous knowledge, it was expected to see differences in colocalization of Bcl-2 and Beclin 1 in cells treated with different PREP-modifications. However, there were no significant differences in colocalization of Beclin 1 and Bcl-2 in any of the experiments but it was nearly 100 percent in all treatments. Since rate of autophagy in cells was not detected, it is impossible to determine, if there were changes in autophagy that were not reflected as changes in colocalization of these two proteins. It is possible that even a small change in colocalization can affect the rate of autophagy or there might be subpopulations where the interaction is interrupted and these changes are so small that they are not detectable with the methods used in this experiment. Both Bcl-2 and Beclin 1 also have functions not related to autophagy, which could be one reason behind the results gained in this study.
  • Mannistö, Pekka T.; Garcia-Horsman, J. Arturo (2017)
    In the aging brain, the correct balance of neural transmission and its regulation is of particular significance, and neuropeptides have a significant role. Prolyl oligopeptidase (PREP) is a protein highly expressed in brain, and evidence indicates that it is related to aging and in neurodegenration. Although PREP is regarded as a peptidase, the physiological substrates in the brain have not been defined, and after intense research, the molecular mechanisms where this protein is involved have not been defined. We propose that PREP functions as a regulator of other proteins though peptide gated direct interaction. We speculate that, at least in some processes where PREP has shown to be relevant, the peptidase activity is only a consequence of the interactions, and not the main physiological activity.
  • Jokinen, Birgitta (Helsingfors universitet, 2010)
    Angiogenesis may be regarded as one of the most important phenomena involved in basic physiology as well as in numerous pathological conditions. Angiogenesis is a multistep process involving the balance of pro- and con-angiogenic factors. Several studies have suggested that angiogenesis is regulated in vitro and in vivo by peptides thymosin ȕ4 (Tȕ4) and tetrapeptide Ac-SDKP (N-acetyl-seryl-aspartyl-lysyl-proline). There are also studies supporting the view that Ac-SDKP, a peptide fragment is released from the proline-containing C-terminus of Tȕ4 (43-mer) by hydrolyzing prolyl oligopeptidase (POP). POP is a widely existing serine protease cleaving oligopeptides of no longer than 30 amino acids. Thus, Tȕ4 should first be cleaved into a shorter peptide by some other, yet unknown peptidase. POP has been mostly studied in memory and learning disorders as well as in neurodegenerative diseases. The true physiological character of POP is still unresolved. In this Master's thesis, the associations of the factors involved in angiogenesis are reviewed in the literature part as well as the character, presence and function of the angiogenic molecules 7ȕ4, Ac-SDKP and POP. In the experimental part attempts were made to find whether POP and Tȕ4 increase Ac-SDKP formation and capillary tube network and consequently, whether the POP activity, tetrapeptide and capillary formation could be inhibited by the proline-spesific POP inhibitor KYP-2047. The study had two phases. The first phase included POP activity and Ac-SDKP measurements(time period 0-180 min) with Wistar rat kidney homogenates. Study groups were 0,1 and 0,5 µM KYP-2047 (+2 µM Tȕ4), 1:20 (0.625 µM) human recombinant POP (+ 2 µM Tȕ4), 2 µM 7ȕ4 (pos. control) and raw homogenate (neg. control). The second phase involved the study of capillary formation (time period 0-180 min) with primary endothelial HUVECs on a 48-well plate seeded with 50 000 cells/well on an extracellular membrane mimicking MatrigelTM Matrix dissolved in DMEM. Study groups treated with fetal bovine serum and antibiotics were 5 and 10 µM KYP-2047 (+4 µM Tȕ4), 1:20 (0.625 µM) human recombinant POP (+4 µM Tȕ4)4 µM Tȕ4 (pos. control) and DMEM (neg. control). The wells were cultured and capillary formation photographed with a light microscope using a digital camera. All experiments were repeated four times, and each study group in wells was measured in triplicate. Enclosed capillaries were counted manually and statistical tests were performed. 7ȕ4 along with POP participated in the formation of AC-SDKP in the kidney homogenates. Cultures of primary endothelial cells on Matrigel resulted in clear capillary formation in Tȕ4 and POP groups. KYP-2047 had a strong POP-inhibitory activity on antiangiogenesis throughout the study resulting. Obviously, underlying mechanisms of angiogenesis and the function of the interaction between POP, Tȕ4 and Ac-SDKP in capillary formation require further studies.
  • Hannula, Mirva (Helsingfors universitet, 2010)
    Prolyl oligopeptidase (POP, prolyl endopeptidase, EC is a serine-type peptidase (family S9 of clan SC) hydrolyzing peptides shorter than 30 amino acids. POP has been found in various mammalian and bacterial sources and it is widely distributed throughout different organisms. In human and rat, POP enzyme activity has been detected in most tissues, with the highest activity found mostly in the brain. POP has gained scientific interest as being involved in the hydrolyzis of many bioactive peptides connected with learning and memory functions, and also with neurodegenerative disorders. In drug or lesion induced amnesia models and in aged rodents, POP inhibitors have been able to revert memory loss. POP may have a fuction in IP3 signaling and it may be a possible target of mood stabilizing substances. POP may also have a role in protein trafficking, sorting and secretion. The role of POP during ontogeny has not yet been resolved. POP enzyme activity and expression have shown fluctuation during development. Specially high enzyme activities have been measured in the brain during early development. Reduced neuronal proliferation and differentation in presence of POP inhibitor have been reported. Nuclear POP has been observed in proliferating peripheral tissues and in cell cultures at the early stage of development. Also, POP coding mRNA is abundantly expressed during brain ontogeny and the highest levels of expression are associated with proliferative germinal matrices. This observation indicates a special role for POP in the regulation of neurogenesis during development. For the experimental part, the study was undertaken to investigate the expression and distribution of POP protein and enzymatic activity of POP in developing rat brain (from embryonic day 14 to post natal day 7) using immunohistochemistry, POP enzyme activity measurements and western blot-analysis. The aim was also to find in vivo confirmation of the nuclear colocalization of POP during early brain ontogeny. For immunohistochemistry, cryosections from the brains of the fetuses/rats were made and stained using specific antibody for POP and fluorescent markers for POP and nuclei. The enzyme activity assay was based on the fluorescence of 7- amino-4-methylcoumarin (AMC) generated from the fluorogenic substrate succinyl-glycyl-prolyl-7-amino-4-methylcoumarin (Suc-Gly-Pro-AMC) by POP. The amounts of POP protein and the specifity of POP antibody in rat embryos was confirmed by western blot analysis. We observed that enzymatic activity of POP is highest at embryonic day 18 while the protein amounts reach their peak at birth. POP was widely present throughout the developmental stages from embryonic day 14 to parturition day, although the POP-immunoreactivity varied abundantly. At embryonic days 14 and 18 notably amounts of POP was distributed at proliferative germinal zones. Furthermore, POP was located in the nucleus early in the development but is transferred to cytosol before birth. At P0 and P7 the POP-immunoreactivity was also widely observed, but the amount of POP was notably reduced at P7. POP was present in cytosol and in intercellular space, but no nuclear POP was observed. These findings support the idea of POP being involved in specific brain functions, such as neuronal proliferation and differentation. Our results in vivo confirm the previous cell culture results supporting the role of POP in neurogenesis. Moreover, an inconsistency of POP protein amounts and enzymatic activity late in the development suggests a strong regulation of POP activity and a possible non-hydrolytic role at that stage.
  • Penttinen, Anne (Helsingfors universitet, 2010)
    Prolyl oligopeptidase (POP, E.C. cleaves short peptides, of less than 30 amino acid long, at the C-side of an internal proline. It has been associated with many pathophysiological processes, such as neurodegeneration and inflammation. At the moment there are no studies that have been focused on POP function in multiple sclerosis (MS). A preliminary study in a Spanish cohort reported altered POP activity in plasma samples of patients with relapsing-remitting multiple sclerosis (RR-MS) compared with healthy controls. Also they observed increased levels of the endogenous POP inhibitor in plasma samples of patients with RR-MS. The first objective of this study was to evaluate the POP activity levels in serum and cerebrospinal fluid (CSF) samples from RR-MS patients and healthy controls in a Finnish population using a kinetic fluorescence assay. The seral levels of the endogenous POP inhibitor were also investigated by preincubating recombinant porcine POP (rPOP) with serum and determining the percentual decrease of POP activity compared to basal rPOP values (inhibitory capacity %). The second objective of this study was to purify and characterize the endogenous POP inhibitor in serum. In order to accomplish this goal, different biochemical and biophysical features, such as temperature resistance and filtering cut-off were tested. Also a combination of chromatographic approaches (affinity/anion exchange/hydrophobic interaction chromatography) with polyacrylamide gel electrophoresis and protein staining was used. All the differences observed in POP activity/inhibitor levels (serum, serum with DTT, CSF) between healthy controls and patients with RR-MS in this study did not reach statistical significance due to low values in all the samples. However, the trends in all the measured parameters were similar to the preliminary study in a Spanish cohort. Thus, the data supports further, more comprehensive, studies on the role of POP in MS. After series of chromatographic runs, a mass spectrometry analysis revealed the endogenous POP inhibitor to be α2-macroglobulin, a panprotease inhibitor in serum. α2-Macroglobulin has also been associated with MS, thus this finding substantiate the relationship between POP and MS.
  • Ignatius, Adele (Helsingin yliopisto, 2021)
    Misfolding and aggregation of alpha-synuclein (α-syn) protein, leading to dysfunctional proteins and toxic protein aggregates, are seen as major factors in the pathogenesis of Parkinson’s disease (PD). Direct protein-protein interactions (PPI) between α-syn and a serine endopeptidase, prolyl oligopeptidase (PREP), have been shown to increase α-syn aggregation. Small molecular PREP inhibitors, in turn, have been shown to reduce the ɑ-syn aggregation process both in vitro and in vivo. Inhibition of PREP has been shown to have dual effects on ɑ-syn aggregation: first of all, blocking PREP mediated seeding and secondly, inducing the clearance of ɑ-syn aggregates via increased autophagy. Thus, PREP inhibitors should be further studied as a potential treatment for PD and other synucleinopathies. In this study, we evaluated the effect of two different PREP inhibitors, 4-phenylbutanoyl-L-prolyl-2(S)-cyanopyrrolidine (KYP-2047) and HUP-115 in a virus vector-based unilateral A53T-ɑ-syn overexpression mouse model. AAV-A53T-ɑ-syn injections used in this study caused a significant increase in oligomer-specific alpha-synuclein (ɑ-synO5) immunoreactivity and a mild dopaminergic neuron loss, together with mild motor deficits. Neither 2-week PREP inhibition with KYP-2047 or 4-week PREP inhibition with HUP-115 reduced ɑ-synO5 immunoreactivity or protected dopaminergic neurons in the substantia nigra (SN). Concordant to this, the treatments did not restore the slight behavioral deficit AAV-A53T-ɑ-syn injections caused in the cylinder test. In previous studies, PREP inhibition with KYP-2047 decreased ɑ-synO5 immunoreactivity, attenuated dopaminergic neuron loss and restored behavioral deficits in other α-syn overexpression mouse models. It is suggested that PREP inhibitors mainly have an effect on soluble ɑ-syn oligomers, rather than insoluble fibrils. In case A53T-ɑ-syn forms insoluble fibrils too rapidly in mice, overexpression of A53T-ɑ-syn might not be a suitable option when studying the effects of PREP inhibitors. Our results suggest that further characterization of this model in mice is much needed before drawing any conclusions about the effect of these PREP inhibitors.