Browsing by Subject "quantum of action"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Annila, Arto; Wikström, Mårten (2022)
    We reason that it is the gravitation of all ordinary matter, extending from the dense distant past to the sparse present, rather than dark matter, that shows up in galaxy rotation and velocity dispersion. Likewise, we argue that it is this gradient in the gravitational energy due to the expansion, rather than dark energy, that explains Type 1a supernovae brightness vs. redshift data. Our conclusions follow from statistical mechanics, the thermodynamic theory based on the atomistic axiom that everything comprises quanta. In line with the Einstein field equations, the vacuum quanta embodying gravitation, geometrized as spacetime, equate in dynamic balance to the quanta embodying the substance of the stress-energy tensor. In accordance with quantum field theory, the proposed ground-state field of paired light quanta complies with Bose-Einstein statistics and assumes an excited state around a particle.
  • Annila, Arto (2021)
    Evolution is customarily perceived as a biological process. However, when formulated in terms of physics, evolution is understood to entail everything. Based on the axiom of everything comprising quanta of actions (e.g., quanta of light), statistical physics describes any system evolving toward thermodynamic balance with its surroundings systems. Fluxes of quanta naturally select those processes leveling out differences in energy as soon as possible. This least-time maxim results in ubiquitous patterns (i.e., power laws, approximating sigmoidal cumulative curves of skewed distributions, oscillations, and even the regularity of chaos). While the equation of evolution can be written exactly, it cannot be solved exactly. Variables are inseparable since motions consume driving forces that affect motions (and so on). Thus, evolution is inherently a non-deterministic process. Yet, the future is not all arbitrary but teleological, the final cause being the least-time free energy consumption itself. Eventually, trajectories are computable when the system has evolved into a state of balance where free energy is used up altogether.