Browsing by Subject "radiative transfer"

Sort by: Order: Results:

Now showing items 1-15 of 15
  • Muinonen, K.; Torppa, J.; Wang, X-B; Cellino, A.; Penttilä, A. (2020)
    Context. We assess statistical inversion of asteroid rotation periods, pole orientations, shapes, and phase curve parameters from photometric lightcurve observations, here sparse data from the ESA Gaia space mission (Data Release 2) or dense and sparse data from ground-based observing programs.Aims. Assuming general convex shapes, we develop inverse methods for characterizing the Bayesian a posteriori probability density of the parameters (unknowns). We consider both random and systematic uncertainties (errors) in the observations, and assign weights to the observations with the help of Bayesian a priori probability densities.Methods. For general convex shapes comprising large numbers of parameters, we developed a Markov-chain Monte Carlo sampler (MCMC) with a novel proposal probability density function based on the simulation of virtual observations giving rise to virtual least-squares solutions. We utilized these least-squares solutions to construct a proposal probability density for MCMC sampling. For inverse methods involving triaxial ellipsoids, we update the uncertainty model for the observations.Results. We demonstrate the utilization of the inverse methods for three asteroids with Gaia photometry from Data Release 2: (21) Lutetia, (26) Proserpina, and (585) Bilkis. First, we validated the convex inverse methods using the combined ground-based and Gaia data for Lutetia, arriving at rotation and shape models in agreement with those derived with the help of Rosetta space mission data. Second, we applied the convex inverse methods to Proserpina and Bilkis, illustrating the potential of the Gaia photometry for setting constraints on asteroid light scattering as a function of the phase angle (the Sun-object-observer angle). Third, with the help of triaxial ellipsoid inversion as applied to Gaia photometry only, we provide additional proof that the absolute Gaia photometry alone can yield meaningful photometric slope parameters. Fourth, for (585) Bilkis, we report, with 1-sigma uncertainties, a refined rotation period of (8.5750559 0.0000026) h, pole longitude of 320.6 degrees +/- 1.2 degrees, pole latitude of - 25.6 degrees +/- 1.7 degrees, and the first shape model and its uncertainties from convex inversion.Conclusions. We conclude that the inverse methods provide realistic uncertainty estimators for the lightcurve inversion problem and that the Gaia photometry can provide an asteroid taxonomy based on the phase curves.
  • Zhou, Chenlin; Vastel, Charlotte; Montillaud, Julien; Ceccarelli, Cecilia; Demyk, Karine; Harju, Jorma; Juvela, Mika; Ristorcelli, Isabelle; Liu, Tie (2022)
    Context. A solar-type system starts from an initial molecular core that acquires organic complexity as it evolves. The so-called prestellar cores that can be studied are rare, which has hampered our understanding of how organic chemistry sets in and grows. Aims. We selected the best prestellar core targets from the cold core catalogue (based on Planck and Herschel observations) that represent a diversity in terms of their environment to explore their chemical complexity: 1390 (in the compressed shell of Lambda Ori), 869 (in the MBM12 cloud), and 4149 (in the California nebula). Methods. We obtained a spectral survey with the IRAM 30 m telescope in order to explore the molecular complexity of the cores. We carried out a radiative transfer analysis of the detected transitions in order to place some constraints on the physical conditions of the cores and on the molecular column densities. We also used the molecular ions in the survey to estimate the cosmic-ray ionisation rate and the S/H initial elemental abundance using a gas-phase chemical model to reproduce their abundances. Results. We found large differences in the molecular complexity (deuteration, complex organic molecules, sulphur, carbon chains, and ions) and compared their chemical properties with a cold core and two prestellar cores. The chemical diversity we found in the three cores seems to be correlated with their chemical evolution: two of them are prestellar (1390 and 4149), and one is in an earlier stage (869). Conclusions. The influence of the environment is likely limited because cold cores are strongly shielded from their surroundings. The high extinction prevents interstellar UV radiation from penetrating deeply into the cores. Higher spatial resolution observations of the cores are therefore needed to constrain the physical structure of the cores, as well as a larger-scale distribution of molecular ions to understand the influence of the environment on their molecular complexity.
  • Micelotta, Elisabetta R.; Juvela, Mika; Padoan, Paolo; Ristorcelli, Isabelle; Alina, Dana; Malinen, Johanna (2021)
    Context. The all-sky survey from the Planck space telescope has revealed that thermal emission from Galactic dust is polarized on scales ranging from the whole sky down to the inner regions of molecular clouds. Polarized dust emission can therefore be used as a probe for magnetic fields on different scales. In particular, the analysis of the relative orientation between the density structures and the magnetic field projected on the plane of the sky can provide information on the role of magnetic fields in shaping the structure of molecular clouds where star formation takes place.Aims. The orientation of the magnetic field with respect to the density structures has been investigated using different methods. The goal of this paper is to explicitly compare two of these: the Rolling Hough Transform (RHT) and the gradient technique (GRAD).Methods. We generated synthetic surface brightness maps at 353 GHz (850 mu m) via magnetohydrodynamic simulations. We applied RHT and GRAD to two morphologically different regions identified in our maps. Region 1 is dominated by a dense and thick filamentary structure with some branches, while Region 2 includes a thinner filament with denser knots immersed in a more tenuous medium. Both methods derive the relative orientation between the magnetic field and the density structures, to which we applied two statistics, the histogram of relative orientation and the projected Rayleigh statistic, to quantify the variations of the relative orientation as a function of column density.Results. Both methods find areas with significant signal, and these areas are substantially different. In terms of relative orientations, in all our considered cases the predominant orientation of the density structures is perpendicular to the direction of the magnetic field. When the methods are applied to the same selected areas the results are consistent with each other in Region 2 but show some noticeable differences in Region 1. In Region 1, RHT globally finds the relative orientation becoming more perpendicular for increasing column density, while GRAD, applied at the same resolution as RHT, gives the opposite trend. These disparities are caused by the intrinsic differences in the methods and in the structures that they select.Conclusions. Our results indicate that the interpretation of the relative orientation between the magnetic field and density structures should take into account the specificity of the methods used to determine such orientation. The combined use of complementary techniques such as RHT and GRAD provides more complete information, which can be advantageously used to better understand the physical mechanisms operating in magnetized molecular clouds.
  • Pihajoki, Pauli; Mannerkoski, Matias; Nattila, Joonas; Johansson, Peter H. (2018)
    Ray tracing is a central tool for constructing mock observations of compact object emission and for comparing physical emission models with observations. We present ARCMANCER, a publicly available general ray-tracing and tensor algebra library, written in C++ and providing a Python interface. ARCMANCER supports Riemannian and semi-Riemannian spaces of any dimension and metric, and has novel features such as support for multiple simultaneous coordinate charts, embedded geometric shapes, local coordinate systems, and automatic parallel propagation. The ARCMANCER interface is extensively documented and user friendly. While these capabilities make the library well suited for a large variety of problems in numerical geometry, the main focus of this paper is in general relativistic polarized radiative transfer. The accuracy of the code is demonstrated in several code tests and in a comparison with GRTRANS, an existing ray-tracing code. We then use the library in several scenarios as a way to showcase the wide applicability of the code. We study a thin variable-geometry accretion disk model and find that polarization carries information of the inner disk opening angle. Next, we study rotating neutron stars and determine that to obtain polarized light curves at better than a similar to 1% level of accuracy, the rotation needs to be taken into account both in the spacetime metric and in the shape of the star. Finally, we investigate the observational signatures of an accreting black hole lensed by an orbiting black hole. We find that these systems exhibit a characteristic asymmetric twin-peak profile both in flux and polarization properties.
  • Gordon, K. D.; Baes, M.; Bianchi, S.; Camps, P.; Juvela, M.; Kuiper, R.; Lunttila, T.; Misselt, K. A.; Natale, G.; Robitaille, T.; Steinacker, J. (2017)
    Context. The radiative transport of photons through arbitrary three-dimensional (3D) structures of dust is a challenging problem due to the anisotropic scattering of dust grains and strong coupling between different spatial regions. The radiative transfer problem in 3D is solved using Monte Carlo or Ray Tracing techniques as no full analytic solution exists for the true 3D structures. Aims. We provide the first 3D dust radiative transfer benchmark composed of a slab of dust with uniform density externally illuminated by a star. This simple 3D benchmark is explicitly formulated to provide tests of the different components of the radiative transfer problem including dust absorption, scattering, and emission. Methods. The details of the external star, the slab itself, and the dust properties are provided. This benchmark includes models with a range of dust optical depths fully probing cases that are optically thin at all wavelengths to optically thick at most wavelengths. The dust properties adopted are characteristic of the diffuse Milky Way interstellar medium. This benchmark includes solutions for the full dust emission including single photon (stochastic) heating as well as two simplifying approximations: One where all grains are considered in equilibrium with the radiation field and one where the emission is from a single effective grain with size-distribution-averaged properties. A total of six Monte Carlo codes and one Ray Tracing code provide solutions to this benchmark. Results. The solution to this benchmark is given as global spectral energy distributions (SEDs) and images at select diagnostic wavelengths from the ultraviolet through the infrared. Comparison of the results revealed that the global SEDs are consistent on average to a few percent for all but the scattered stellar flux at very high optical depths. The image results are consistent within 10%, again except for the stellar scattered flux at very high optical depths. The lack of agreement between different codes of the scattered flux at high optical depths is quantified for the first time. Convergence tests using one of the Monte Carlo codes illustrate the sensitivity of the solutions to various model parameters. Conclusions. We provide the first 3D dust radiative transfer benchmark and validate the accuracy of this benchmark through comparisons between multiple independent codes and detailed convergence tests.
  • Lu, P.; Cao, X.; Wang, Q.; Leppäranta, M.; Cheng, B.; Li, Z. (2018)
    To investigate the influence of a surface ice lid on the optical properties of a melt pond, a radiative transfer model was employed that includes four plane-parallel layers: an ice lid, a melt pond, the underlying ice, and the ocean beneath the ice. The thickness H-s and the scattering coefficient sigma(s) of the ice lid are altered. Variations in the spectral albedo and transmittance T due to H-s for a transparent ice lid are limited, and scattering in the ice lid has a pronounced impact on the albedo of melt ponds as well as the vertical distribution of spectral irradiance in ponded sea ice. The thickness of the ice lid determines the amount of solar energy absorbed. A 2-cm-thick ice lid can absorb 13% of the incident solar energy, half of the energy absorbed by a 30-cm-deep meltwater layer below the lid. This has an influence on the thermodynamics of melting sea ice. The color and spectral albedo of refreezing melt ponds depend on the value of the dimensionless number sigma(s) H- s. Good agreement between field measurements and our model simulations is found. The number sigma(s) H- s is confirmed to be a good index showing that the influence of an ice lid with sigma(s) H- s Plain Language Summary Melt ponds are pools of open water that form on sea ice in the warm months of the Arctic Ocean, and they will frequently be refrozen due to loss of heat and then covered by an ice lid or snow even in summer. This lid is very important to the optical properties of melt ponds. If the ice lid is very thin, the change in the reflective characteristics of the melt pond is minimal; that is, the influence of the ice lid is negligible. If snow accumulates on the ice lid, the reflective characteristics of the melt pond change completely. How about the situation between the above two extreme cases? In this study, we find that a dimensionless number is a good index to quantify the impact of the ice lid. Visual inspections on the color of refreezing melt ponds also help to judge the significance of the influence of the ice lid. This will allow for an accurate estimation on the role of surface ice lid during field investigations on the optical properties of melt ponds.
  • Juvela, Mika (2020)
    Context. Radiative transfer (RT) modelling is part of many astrophysical simulations. It is used to make synthetic observations and to assist the analysis of observations. We concentrate on modelling the radio lines emitted by the interstellar medium. In connection with high-resolution models, this can be a significant computationally challenge.Aims. Our aim is to provide a line RT program that makes good use of multi-core central processing units (CPUs) and graphics processing units (GPUs). Parallelisation is essential to speed up computations and to enable large modelling tasks with personal computers.Methods. The program LOC is based on ray-tracing (i.e. not Monte Carlo) and uses standard accelerated lambda iteration methods for faster convergence. The program works on 1D and 3D grids. The 1D version makes use of symmetries to speed up the RT calculations. The 3D version works with octree grids, and to enable calculations with large models, is optimised for low memory usage.Results. Tests show that LOC results agree with other RT codes to within similar to 2%. This is typical of code-to-code differences, which are often related to different interpretations of the model set-up. LOC run times compare favourably especially with those of Monte Carlo codes. In 1D tests, LOC runs were faster by up to a factor similar to 20 on a GPU than on a single CPU core. In spite of the complex path calculations, a speed-up of up to similar to 10 was also observed for 3D models using octree discretisation. GPUs enable calculations of models with hundreds of millions of cells, as are encountered in the context of large-scale simulations of interstellar clouds.Conclusions. LOC shows good performance and accuracy and is able to handle many RT modelling tasks on personal computers. It is written in Python, with only the computing-intensive parts implemented as compiled OpenCL kernels. It can therefore also a serve as a platform for further experimentation with alternative RT implementation details.
  • Sipilä, O.; Caselli, P.; Harju, J. (2019)
    We constructed two new models for deuterium and spin-state chemistry for the purpose of modeling the low-temperature environment prevailing in starless and pre-stellar cores. The fundamental difference between the two models is in the treatment of ion-molecule proton-donation reactions of the form XH+ + Y -> X + YH+, which are allowed to proceed either via full scrambling or via direct proton hop, that is, disregarding proton exchange. The choice of the reaction mechanism affects both deuterium and spin-state chemistry, and in this work our main interest is on the effect on deuterated ammonia. We applied the new models to the starless core H-MM1, where several deuterated forms of ammonia have been observed. Our investigation slightly favors the proton hop mechanism over full scrambling because the ammonia D/H ratios are better fit by the former model, although neither model can reproduce the observed NH2D ortho-to-para ratio of 3 (the models predict a value of similar to 2). Extending the proton hop scenario to hydrogen atom abstraction reactions yields a good agreement for the spin-state abundance ratios, but greatly overestimates the deuterium fractions of ammonia. However, one can find a reasonably good agreement with the observations with this model by increasing the cosmic-ray ionization rate over the commonly adopted value of similar to 10(-17) s(-1). We also find that the deuterium fractions of several other species, such as H2CO, H2O, and CH3, are sensitive to the adopted proton-donation reaction mechanism. Whether the full scrambling or proton hop mechanism dominates may be dependent on the reacting system, and new laboratory and theoretical studies for various reacting systems are needed to constrain chemical models.
  • Saajasto, Mika; Juvela, Mika; Lefevre, Charlene; Pagani, Laurent; Ysard, Nathalie (2021)
    Context. Light scattering at near-infrared (NIR) wavelengths has been used to study the optical properties of the interstellar dust grains, but these studies are limited by the assumptions on the strength of the radiation field. On the other hand, thermal dust emission can be used to constrain the properties of the radiation field, although this is hampered by uncertainty about the dust emissivity.Aims. Combining light scattering and emission studies allows us to probe the properties of the dust grains in detail. We wish to study if current dust models allow us to model a molecular cloud simultaneously in the NIR and far-infrared (FIR) wavelengths and compare the results with observations. Our aim is to place constraints on the properties of the dust grains and the strength of the radiation field.Methods. We present computations of dust emission and scattered light of a quiescent molecular cloud LDN1512. We use NIR observations covering the J, H, and K-S bands, and FIR observations between 250 and 500 mu m from the Herschel space telescope. We constructed radiative transfer models for LDN1512 that include an anisotropic radiation field and a three-dimensional cloud model.Results. We are able to reproduce the observed FIR observations, with a radiation field derived from the DIRBE observations, with all of the tested dust models. However, with the same density distribution and the assumed radiation field, the models fail to reproduce the observed NIR scattering in all cases except for models that take into account dust evolution via coagulation and mantle formation. The intensity from the diffuse interstellar medium like, dust models can be increased to match the observed one by reducing the derived density, increasing the intensity of the background sky and the strength of the radiation field between factors from two to three. We find that the column densities derived from our radiative transfer modelling can differ by a factor of up to two, compared to the column densities derived from the observations with modified blackbody fits. The discrepancy in the column densities is likely caused because of a temperature difference between a modified blackbody fit and the real spectra. The difference between the fitted temperature and the true temperature could be as high as Delta T = +1.5 K.Conclusions. We show that the observed dust emission can be reproduced with several different assumptions about the properties of the dust grains. However, in order to reproduce the observed scattered surface brightness, dust evolution must be taken into account.
  • Saajasto, Mika; Juvela, Mika; Malinen, Johanna (2018)
    Context. Regarding the evolution of dust grains from diffuse regions of space to dense molecular cloud cores, many questions remain open. Scattering at near-infrared wavelengths, or "cloudshine", can provide information on cloud structure, dust properties, and the radiation field that is complementary to mid-infrared "coreshine" and observations of dust emission at longer wavelengths. Aims. We examine the possibility of using near-infrared scattering to constrain the local radiation field and the dust properties, the scattering and absorption efficiency, the size distribution of the grains, and the maximum grain size. Methods. We use radiative transfer modelling to examine the constraints provided by the J, H, and K bands in combination with mid-infrared surface brightness at 3.6 mu m. We use spherical one-dimensional and elliptical three-dimensional cloud models to study the observable effects of different grain size distributions with varying absorption and scattering properties. As an example, we analyse observations of a molecular cloud in Taurus, TMC-1N. Results. The observed surface brightness ratios of the bands change when the dust properties are changed. However, even a change of +/- 10% in the surface brightness of one band changes the estimated power-law exponent of the size distribution gamma by up to similar to 30% and the estimated strength of the radiation field K-ISRF by up to similar to 60%. The maximum grain size A(max) and gamma are always strongly anti-correlated. For example, overestimating the surface brightness by 10% changes the estimated radiation field strength by similar to 20% and the exponent of the size distribution by similar to 15%. The analysis of our synthetic observations indicates that the relative uncertainty of the parameter distributions are on average A(max), gamma similar to 25%, and the deviation between the estimated and correct values Delta Q <15%. For the TMC-1N observations, a maximum grain size A(max) > 1.5 mu m and a size distribution with gamma > 4.0 have high probability. The mass weighted average grain size is <a(m)> = 0.113 mu m. Conclusions. We show that scattered infrared light can be used to derive meaningful limits for the dust parameters. However, errors in the surface brightness data can result in considerable uncertainties on the derived parameters.
  • Nättilä, J.; Pihajoki, P. (2018)
    A theoretical framework for emission originating from rapidly rotating oblate compact objects is described in detail. Using a Hamilton-Jacobi formalism, we show that special relativistic rotational effects such as aberration of angles, Doppler boosting, and time dilatation naturally emerge from the general relativistic treatment of rotating compact objects. We use the Butterworth-Ipser metric expanded up to the second order in rotation and hence include effects of light bending, frame-dragging, and quadrupole deviations on our geodesic calculations. We also give detailed descriptions of the numerical algorithms used and provide an open-source implementation of the numerical framework called BENDER. As an application, we study spectral line profiles (i.e., smearing kernels) from rapidly rotating oblate neutron stars. We find that in this metric description, the second-order quadrupole effects are not strong enough to produce narrow observable features in the spectral energy distribution for almost any physically realistic parameter combination, and hence, actually detecting them is unlikely. The full width at tenth-maximum and full width at half-maximum of the rotation smearing kernels are also reported for all viewing angles. These can then be used to quantitatively estimate the effects of rotational smearing on the observed spectra. We also calculate accurate pulse profiles and observer skymaps of emission from hot spots on rapidly rotating accreting millisecond pulsars. These allow us to quantify the strength of the pulse fractions one expects to observe from typical fast-spinning millisecond pulsars.
  • Juvela, Mika (2019)
    Context. Thermal dust emission carries information on physical conditions and dust properties in many astronomical sources. Because observations represent a sum of emission along the line of sight, their interpretation often requires radiative transfer (RT) modelling. Aims. We describe a new RT program, SOC, for computations of dust emission, and examine its performance in simulations of interstellar clouds with external and internal heating. Methods. SOC implements the Monte Carlo RT method as a parallel program for shared-memory computers. It can be used to study dust extinction, scattering, and emission. We tested SOC with realistic cloud models and examined the convergence and noise of the dust-temperature estimates and of the resulting surface-brightness maps. Results. SOC has been demonstrated to produce accurate estimates for dust scattering and for thermal dust emission. It performs well with both CPUs and GPUs, the latter providing a speed-up of processing time by up to an order of magnitude. In the test cases, accelerated lambda iterations (ALIs) improved the convergence rates but was also sensitive to Monte Carlo noise. Run-time refinement of the hierarchical-grid models did not help in reducing the run times required for a given accuracy of solution. The use of a reference field, without ALI, works more robustly, and also allows the run time to be optimised if the number of photon packages is increased only as the iterations progress. Conclusions. The use of GPUs in RT computations should be investigated further.
  • Väisälä, M. S.; Gent, F. A.; Juvela, M.; Käpylä, M. J. (2018)
    Context. Efforts to compare polarization measurements with synthetic observations from magnetohydrodynamics (MHD) models have previously concentrated on the scale of molecular clouds. Aims. We extend the model comparisons to kiloparsec scales, taking into account hot shocked gas generated by supernovae and a non-uniform dynamo-generated magnetic field at both large and small scales down to 4 pc spatial resolution. Methods. We used radiative transfer calculations to model dust emission and polarization on top of MHD simulations. We computed synthetic maps of column density N-H, polarization fraction p, and polarization angle dispersion S, and studied their dependencies on important properties of MHD simulations. These include the large-scale magnetic field and its orientation, the small-scale magnetic field, and supernova-driven shocks. Results. Similar filament-like structures of S as seen in the Planck all-sky maps are visible in our synthetic results, although the smallest scale structures are absent from our maps. Supernova-driven shock fronts and S do not show significant correlation. Instead, S can clearly be attributed to the distribution of the small-scale magnetic field. We also find that the large-scale magnetic field influences the polarization properties, such that, for a given strength of magnetic fluctuation, a strong plane of the sky mean field weakens the observed S, while strengthening p. The anticorrelation of p and S, and decreasing p as a function of NH are consistent across all synthetic observations. The magnetic fluctuations follow an exponential distribution, rather than Gaussian characteristic of flows with intermittent repetitive shocks. Conclusions. The observed polarization properties and column densities are sensitive to the line-of-sight distance over which the emission is integrated. Studying synthetic maps as the function of maximum integration length will further help with the interpretation of observations. The effects of the large-scale magnetic field orientation on the polarization properties are difficult to be quantified from observations solely, but MHD models might turn out to be useful for separating the effect of the large-scale mean field.
  • Sipilä, O.; Caselli, P.; Redaelli, E.; Juvela, M.; Bizzocchi, L. (2019)
    We carried out a parameter-space exploration of the ammonia abundance in the pre-stellar core L1544, where it has been observed to increase toward the centre of the core with no signs of freeze-out onto grain surfaces. We considered static and dynamical physical models coupled with elaborate chemical and radiative transfer calculations, and explored the effects of varying model parameters on the (ortho + para) ammonia abundance profile. None of our models are able to reproduce the inward-increasing tendency in the observed profile; ammonia depletion always occurs in the centre of the core. In particular, our study shows that including the chemical desorption process, where exothermic association reactions on the grain surface can result in the immediate desorption of the product molecule, leads to ammonia abundances that are over an order of magnitude above the observed level in the innermost 15 000 au of the core - at least when one employs a constant efficiency for the chemical desorption process, irrespective of the ice composition. Our results seemingly constrain the chemical desorption efficiency of ammonia on water ice to below 1 per cent. It is increasingly evident that time-dependent effects must be considered so that the results of chemical models can be reconciled with observations.
  • Vilhu, Osmi; Kallman, T. R.; Koljonen, K. I. I.; Hannikainen, D. C (2021)
    Context. The radiatively driven wind of the primary star in wind-fed X-ray binaries can be suppressed by the X-ray irradiation of the compact secondary star. This causes feedback between the wind and the X-ray luminosity of the compact star.Aims. We aim to estimate how the wind velocity on the face-on side of the donor star depends on the spectral state of the high-mass X-ray binary Cygnus X-3.Methods. We modeled the supersonic part of the wind by computing the line force (force multiplier) with the Castor, Abbott & Klein formalism and XSTAR physics and by solving the mass conservation and momentum balance equations. We computed the line force locally in the wind considering the radiation fields from both the donor and the compact star in each spectral state. We solved the wind equations at different orbital angles from the line joining the stars and took the effect of wind clumping into account. Wind-induced accretion luminosities were estimated using the Bondi-Hoyle-Lyttleton formalism and computed wind velocities at the compact star. We compared them to those obtained from observations.Results. We found that the ionization potentials of the ions contributing the most to the line force fall in the extreme-UV region (100-230 angstrom). If the flux in this region is high, the line force is weak, and consequently, the wind velocity is low. We found a correlation between the luminosities estimated from the observations for each spectral state of Cyg X-3 and the computed accretion luminosities assuming moderate wind clumping and a low mass of the compact star. For high wind clumping, this correlation disappears. We compared the XSTAR method used here with the comoving frame method and found that they agree reasonably well with each other.Conclusions. We show that soft X-rays in the extreme-UV region from the compact star penetrate the wind from the donor star and diminish the line force and consequently the wind velocity on the face-on side. This increases the computed accretion luminosities qualitatively in a similar manner as observed in the spectral evolution of Cyg X-3 for a moderate clumping volume filling factor and a compact star mass of a few (2-3) solar masses.