Browsing by Subject "radiocarbon method"

Sort by: Order: Results:

Now showing items 1-1 of 1
  • Nieminen, Martta (Helsingfors universitet, 2013)
    The trend of energy policy in European Union as well as in international context has lately been to increase the share of renewable biofuels. The causes for this are global warming, shrinking reserves of fossil fuels and governments' aspiration for energy independence. Microalgae have shown to be a potential source of biofuels. Though cultivation of microalgae has a long history, has production for fuel yet been unprofitable. Production has become more effective as cultivation has shifted from open ponds to controlled photobioreactors but to achieve effective cultivation methods substantially more understanding on the ecophysiology of microalgae is needed. The aim of my thesis was to research the optimal light intensity and temperature of photosynthesis for three microalgae (Chlorella pyrenoidosa, Euglena gracilis and Selenastrum sp.), which are the main parameters limiting the level of photosynthesis in nutrient rich environments such as photobioreactor. The research strains were incubated in eight light intensities (0,15-250 µmol m-2 s-2) and in 5-6 temperatures (10-35 °C). Photosynthetic activity was determined with radiocarbon method which is based on the stoichiometry of photosynthesis. The purpose of radiocarbon method is to estimate how much dissolved carbon dioxide do the algae assimilate when photosynthesizing. In the method the algae are incubated in light and dark bottles where certain amount of radiocarbon (14C) has been added as a tracer. The algae fix 14C in the proportion to available 12C. 14C method has become the most common way to measure the photosynthesis of microalgae. All of the algal strains grew in 10-30 °C but C. pyrenoidosa was the only one which grew also in 35 °C. The data was analyzed by fitting them with two photosynthesis-light intensity relationship models and one photosynthesis-temperature relationship model and as a result values of essential parameters, i.e. optimal light intensity (Iopt) and temperature (Topt) for photosynthesis, could be estimated. The model which gave the best fit was chosen to describe the photosynthesis-light intensity relationship. The optimal light intensity for C. pyrenoidosa ranged between 121–242 µmol m-2 s-2 and optimal temperature was 15 °C. Corresponding values for E. gracilis were 117-161 µmol m-2 s-2 and 24,1 °C, and for Selenastrum sp. 126-175 µmol m-2 s-2 and 16,7 °C. Q10-values were also determined. With all research strains, the level of photosynthesis increased as light intensity and temperature grew until optimal values were reached. The strains tolerated higher light intensities in warmer temperatures but after reaching the optimal temperature, the level of photosynthesis did not increase any more with elevating temperature. Robust algal strains, i.e. strains, that are most adaptable in terms of light intensity and temperature, are the most prominent ones for biofuel production. From these research strains the most adaptable strain in terms of light intensity was C. pyrenoidosa and in terms of temperature Selenastrum sp. C. pyrenoidosa had superior carbon fixation rate in relation to cell size. Therefore it can be concluded that C. pyrenoidosa is the most suitable algal strains for biofuel applications of the strains assessed here.