Browsing by Subject "ranking"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Crispino, Marta; Arjas, Elja; Vitelli, Valeria; Barrett, Natasha; Frigessi, Arnoldo (2019)
    We are interested in learning how listeners perceive sounds as having human origins. An experiment was performed with a series of electronically synthesized sounds, and listeners were asked to compare them in pairs. We propose a Bayesian probabilistic method to learn individual preferences from nontransitive pairwise comparison data, as happens when one (or more) individual preferences in the data contradicts what is implied by the others. We build a Bayesian Mallows model in order to handle nontransitive data, with a latent layer of uncertainty which captures the generation of preference misreporting. We then develop a mixture extension of the Mallows model, able to learn individual preferences in a heterogeneous population. The results of our analysis of the musicology experiment are of interest to electroacoustic composers and sound designers, and to the audio industry in general, whose aim is to understand how computer generated sounds can be produced in order to sound more human.
  • Poropudas, Jirka (Helsingfors universitet, 2011)
    The Thesis presents a state-space model for a basketball league and a Kalman filter algorithm for the estimation of the state of the league. In the state-space model, each of the basketball teams is associated with a rating that represents its strength compared to the other teams. The ratings are assumed to evolve in time following a stochastic process with independent Gaussian increments. The estimation of the team ratings is based on the observed game scores that are assumed to depend linearly on the true strengths of the teams and independent Gaussian noise. The team ratings are estimated using a recursive Kalman filter algorithm that produces least squares optimal estimates for the team strengths and predictions for the scores of the future games. Additionally, if the Gaussianity assumption holds, the predictions given by the Kalman filter maximize the likelihood of the observed scores. The team ratings allow probabilistic inference about the ranking of the teams and their relative strengths as well as about the teams’ winning probabilities in future games. The predictions about the winners of the games are correct 65-70% of the time. The team ratings explain 16% of the random variation observed in the game scores. Furthermore, the winning probabilities given by the model are concurrent with the observed scores. The state-space model includes four independent parameters that involve the variances of noise terms and the home court advantage observed in the scores. The Thesis presents the estimation of these parameters using the maximum likelihood method as well as using other techniques. The Thesis also gives various example analyses related to the American professional basketball league, i.e., National Basketball Association (NBA), and regular seasons played in year 2005 through 2010. Additionally, the season 2009-2010 is discussed in full detail, including the playoffs.