Browsing by Subject "regional climate"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Gao, Yao (2016)
    Finnish Meteorological Institute Contributions 124
    Interactions between the land surface and climate are complex as a range of physical, chemical and biological processes take place. Changes in the land surface or the climate can affect the water, energy and carbon cycles in the Earth system. This thesis discusses a number of critical issues that concern land-atmospheric interactions in the boreal zone, which is characterised by vast areas of peatlands, extensive boreal forests and a long snow cover period. Regional climate modelling and land surface modelling were used as the main tools for this study, in conjunction with observational data for evaluation. First, to better describe the present-day land cover in the regional climate model, we introduced an up-to-date and high-resolution land cover map to replace the inaccurate and outdated default land cover map for Fennoscandia. Second, in order to provide background information for future forest anagement actions for climate change mitigation, we studied the biogeophysical effects on the regional climate of peatland forestation, which has been the dominant land cover change in Finland over the last century. Moreover, climate variability can influence the land surface. Although drought is uncommon in northern Europe, an extreme drought occurred in the summer of 2006 in Finland, and induced visible drought symptoms in boreal forests. Thus, we assessed a set of drought indicators with drought impact data in boreal forests in Finland to indicate summer drought in boreal forests. Finally, the impacts of summer drought on water use efficiency of boreal Scots pine forests were studied to gain a deeper understanding of carbon and water dynamics in boreal forest ecosystems. In summary, the key findings of this thesis include: 1) the updated land cover map led to a slight decrease in biases of the simulated climate conditions. It is expected that the model performance could be improved by further development in model physics. 2) Peatland forestation in Finland can induce a warming effect in the spring of up to 0.43 K and a slight cooling effect in the growing season of less than 0.1 K due to decreased surface albedo and increased evapotranspiration, respectively. Corresponding to spring warming, the snow clearance day was advanced by up to 5 days over a 15-year mean. 3) The soil moisture index SMI was the most capable of the assessed drought indicators in capturing the spatial extent of observed forest damage induced by the extreme drought in 2006 in Finland. Thus, a land surface model capable of reliable predictions of regional soil moisture is important in future drought predictions in the boreal zone. 4) The inherent water use efficiency (IWUE) showed an increase during drought at the ecosystem level, and IWUE was found to be more appropriate than the ecosystem water use efficiency (EWUE) in indicating the impacts of drought on ecosystem functioning. The combined effects of soil moisture drought and atmospheric drought on stomatal conductance have to be taken into account in land surface models at the global scale when simulating the drought effects on plant functioning.
  • Maeda, Eduardo; Abera, Temesgen; Siljander, Mika; Aragão, Luiz E. O. C.; Mendes de Moura, Yhasmin; Heiskanen, Janne (2021)
    In the Amazon rainforest, land use following deforestation is diverse and dynamic. Mounting evidence indicates that the climatic impacts of forest loss can also vary considerably, depending on specific features of the affected areas. The size of the deforested patches, for instance, was shown to modulate the characteristics of local climatic impacts. Nonetheless, the influence of different types of land use and management strategies on the magnitude of local climatic changes remains uncertain. Here, we evaluated the impacts of large-scale commodity farming and rural settlements on surface temperature, rainfall patterns, and energy fluxes. Our results reveal that changes in land-atmosphere coupling are induced not only by deforestation size but also, by land use type and management patterns inside the deforested areas. We provide evidence that, in comparison with rural settlements, deforestation caused by large-scale commodity agriculture is more likely to reduce convective rainfall and increase land surface temperature. We demonstrate that these differences are mainly caused by a more intensive management of the land, resulting in significantly lower vegetation cover throughout the year, which reduces latent heat flux. Our findings indicate an urgent need for alternative agricultural practices, as well as forest restoration, for maintaining ecosystem processes and mitigating change in the local climates across the Amazon basin.
  • Helbig, Manuel; Waddington, James M.; Alekseychik, Pavel; Amiro, Brian; Aurela, Mika; Barr, Alan G.; Black, T. Andrew; Carey, Sean K.; Chen, Jiquan; Chi, Jinshu; Desai, Ankur R.; Dunn, Allison; Euskirchen, Eugenie S.; Flanagan, Lawrence B.; Friborg, Thomas; Garneau, Michelle; Grelle, Achim; Harder, Silvie; Heliasz, Michal; Humphreys, Elyn R.; Ikawa, Hiroki; Isabelle, Pierre-Erik; Iwata, Hiroki; Jassal, Rachhpal; Korkiakoski, Mika; Kurbatova, Juliya; Kutzbach, Lars; Lapshina, Elena; Lindroth, Anders; Lofvenius, Mikaell Ottosson; Lohila, Annalea; Mammarella, Ivan; Marsh, Philip; Moore, Paul A.; Maximov, Trofim; Nadeau, Daniel F.; Nicholls, Erin M.; Nilsson, Mats B.; Ohta, Takeshi; Peichl, Matthias; Petrone, Richard M.; Prokushkin, Anatoly; Quinton, William L.; Roulet, Nigel; Runkle, Benjamin R. K.; Sonnentag, Oliver; Strachan, Ian B.; Taillardat, Pierre; Tuittila, Eeva-Stiina; Tuovinen, Juha-Pekka; Turner, Jessica; Ueyama, Masahito; Varlagin, Andrej; Vesala, Timo; Wilmking, Martin; Zyrianov, Vyacheslav; Schulze, Christopher (2020)
    Peatlands and forests cover large areas of the boreal biome and are critical for global climate regulation. They also regulate regional climate through heat and water vapour exchange with the atmosphere. Understanding how land-atmosphere interactions in peatlands differ from forests may therefore be crucial for modelling boreal climate system dynamics and for assessing climate benefits of peatland conservation and restoration. To assess the biophysical impacts of peatlands and forests on peak growing season air temperature and humidity, we analysed surface energy fluxes and albedo from 35 peatlands and 37 evergreen needleleaf forests-the dominant boreal forest type-and simulated air temperature and vapour pressure deficit (VPD) over hypothetical homogeneous peatland and forest landscapes. We ran an evapotranspiration model using land surface parameters derived from energy flux observations and coupled an analytical solution for the surface energy balance to an atmospheric boundary layer (ABL) model. We found that peatlands, compared to forests, are characterized by higher growing season albedo, lower aerodynamic conductance, and higher surface conductance for an equivalent VPD. This combination of peatland surface properties results in a similar to 20% decrease in afternoon ABL height, a cooling (from 1.7 to 2.5 degrees C) in afternoon air temperatures, and a decrease in afternoon VPD (from 0.4 to 0.7 kPa) for peatland landscapes compared to forest landscapes. These biophysical climate impacts of peatlands are most pronounced at lower latitudes (similar to 45 degrees N) and decrease toward the northern limit of the boreal biome (similar to 70 degrees N). Thus, boreal peatlands have the potential to mitigate the effect of regional climate warming during the growing season. The biophysical climate mitigation potential of peatlands needs to be accounted for when projecting the future climate of the boreal biome, when assessing the climate benefits of conserving pristine boreal peatlands, and when restoring peatlands that have experienced peatland drainage and mining.