Browsing by Subject "reperfusion injury"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Humaloja, Jaana; Vento, Maximo; Kuligowski, Julia; Andersson, Sture; Pineiro-Ramos, Jose David; Sanchez-Illana, Angel; Litonius, Erik; Jakkula, Pekka; Hästbacka, Johanna; Bendel, Stepani; Tiainen, Marjaana; Reinikainen, Matti; Skrifvars, Markus B. (2021)
    The products of polyunsaturated fatty acid peroxidation are considered reliable biomarkers of oxidative injury in vivo. We investigated ischemia-reperfusion-related oxidative injury by determining the levels of lipid peroxidation biomarkers (isoprostane, isofuran, neuroprostane, and neurofuran) after cardiac arrest and tested the associations between the biomarkers and different arterial oxygen tensions (PaO2). We utilized blood samples collected during the COMACARE trial (NCT02698917). In the trial, 123 patients resuscitated from out-of-hospital cardiac arrest were treated with a 10-15 kPa or 20-25 kPa PaO2 target during the initial 36 h in the intensive care unit. We measured the biomarker levels at admission, and 24, 48, and 72 h thereafter. We compared biomarker levels in the intervention groups and in groups that differed in oxygen exposure prior to randomization. Blood samples for biomarker determination were available for 112 patients. All four biomarker levels peaked at 24 h; the increase appeared greater in younger patients and in patients without bystander-initiated life support. No association between the lipid peroxidation biomarkers and oxygen exposure either before or after randomization was found. Increases in the biomarker levels during the first 24 h in intensive care suggest continuing oxidative stress, but the clinical relevance of this remains unresolved.
  • Pekkarinen, Pirkka T.; Carbone, Federico; Minetti, Silvia; Ramoni, Davide; Ristagno, Giuseppe; Latini, Roberto; Wihersaari, Lauri; Blennow, Kaj; Zetterberg, Henrik; Toppila, Jussi; Jakkula, Pekka; Reinikainen, Matti; Montecucco, Fabrizio; Skrifvars, Markus B. (2023)
    Background Achieving an acceptable neurological outcome in cardiac arrest survivors remains challenging. Ischemia-reperfusion injury induces inflammation, which may cause secondary neurological damage. We studied the association of ICU admission levels of inflammatory biomarkers with disturbed 48-hour continuous electroencephalogram (cEEG), and the association of the daily levels of these markers up to 72 h with poor 6-month neurological outcome. Methods This is an observational, post hoc sub-study of the COMACARE trial. We measured serum concentrations of procalcitonin (PCT), high-sensitivity C-reactive protein (hsCRP), osteopontin (OPN), myeloperoxidase (MPO), resistin, and proprotein convertase subtilisin/kexin type 9 (PCSK9) in 112 unconscious, mechanically ventilated ICU-treated adult OHCA survivors with initial shockable rhythm. We used grading of 48-hour cEEG monitoring as a measure for the severity of the early neurological disturbance. We defined 6-month cerebral performance category (CPC) 1-2 as good and CPC 3-5 as poor long-term neurological outcome. We compared the prognostic value of biomarkers for 6-month neurological outcome to neurofilament light (NFL) measured at 48 h. Results Higher OPN (p = .03), MPO (p < .01), and resistin (p = .01) concentrations at ICU admission were associated with poor grade 48-hour cEEG. Higher levels of ICU admission OPN (OR 3.18; 95% CI 1.25-8.11 per ln[ng/ml]) and MPO (OR 2.34; 95% CI 1.30-4.21) were independently associated with poor 48-hour cEEG in a multivariable logistic regression model. Poor 6-month neurological outcome was more common in the poor cEEG group (63% vs. 19% p < .001, respectively). We found a significant fixed effect of poor 6-month neurological outcome on concentrations of PCT (F = 7.7, p < .01), hsCRP (F = 4.0, p < .05), and OPN (F = 5.6, p < .05) measured daily from ICU admission to 72 h. However, the biomarkers did not have independent predictive value for poor 6-month outcome in a multivariable logistic regression model with 48-hour NFL. Conclusion Elevated ICU admission levels of OPN and MPO predicted disturbances in cEEG during the subsequent 48 h after cardiac arrest. Thus, they may provide early information about the risk of secondary neurological damage. However, the studied inflammatory markers had little value for long-term prognostication compared to 48-hour NFL.