Browsing by Subject "ruminants"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Mganga, Kevin Z.; Ndathi, Aphaxard J. N.; Wambua, Stephen M.; Bosma, Luwieke; Kaindi, Eric M.; Kioko, Theophilus; Kadenyi, Nancy; Musyoki, Gilbert K.; van Steenbergen, Frank; Musimba, Nashon K. R. (2021)
    Context. Rangeland grasses native to Africa constitute the main diet for free-ranging livestock and wild herbivores. Leaf:stem ratio is a key characteristic used for assessing quality of forages. However, studies to determine the allocation of biomass to leaves and stems as well as chemical components and nutritive value, especially of grasses in African rangelands, are rare. Aim. This study was conducted to establish biomass allocation and chemical and mineral components in leaf and stem fractions of three grasses, Eragrostis superba, Enteropogon macrostachyus and Cenchrus ciliaris, all indigenous to African rangelands. Methods. Plant height, plant densities, plant tiller densities and biomass yields were estimated at the elongation stage, before inflorescence. Chemical and mineral components were determined from biomass harvested at the vegetative phase for all three grass species. Dry matter, ash content, organic matter, crude protein, neutral detergent fibre, acid detergent fibre, acid detergent lignin, and calcium, phosphorus and potassium contents were determined. Key results. Enteropogon macrostachyus displayed significantly greater plant and tiller densities and plant height than the other two species. Leaf and stem biomass fractions varied significantly (P <0.05) among grasses. Leaf:stem ratio of E. superba was double that of E. macrostachyus and C. ciliaris. Crude protein and organic matter yields and net energy for lactation were highest (P <0.05) in E. superba leaf biomass, as was Ca content. Conclusions. Eragrostis superba demonstrated greater potential as a forage species for ruminant animal production than E. macrostachyus and C. ciliaris. Implications. Eragrostis superba is a key forage species that warrants promotion in pasture establishment programs in its native environments.
  • EFSA Panel Anim Hlth Welf EFSA AHA; Nielsen, Soren Saxmose; Sihvonen, Liisa Helena (2020)
    Effectiveness of surveillance and control measures against Rift Valley Fever (RVF) in Mayotte (overseas France) and in continental EU were assessed using mathematical models. Surveillance for early detection of RVF virus circulation implies very low design prevalence values and thus sampling a high number of animals, so feasibility issues may rise. Passive surveillance based on notified abortions in ruminants is key for early warning and at present the only feasible surveillance option. The assessment of vaccination and culling against RVF in Mayotte suggests that vaccination is more effective when quickly implemented throughout the population, e.g. at a rate of 200 or 2,000 animals vaccinated per day. Test and cull is not an option for RVF control in Mayotte given the high number of animals that would need to be tested. If the risk of RVFV introduction into the continental EU increases, ruminant establishments close to possible points of disease incursion should be included in the surveillance. An enhanced surveillance on reproductive disorders should be applied during summer in risk areas. Serosurveillance targets of 0.3% animals should be at least considered. RVF control measures possibly applied in the continental EU have been assessed in the Netherlands, as an example. Culling animals on farms within a 20 km radius of detected farms appears as the most effective measure to control RVF spread, although too many animals should be culled. Alternative measures are vaccination in a 50 km radius around detection, ring vaccination between 20 and 50 km and culling of detected farms. The assessment of zoning showed that, following RVFV introduction and considering an R-0 = 2, a mean vector dispersal of 10 km and 10 farms initially detected, RVFV would spread beyond a radius of up to 100 km or 50 km from the infected area with 10% or 55% probability, respectively. (C) 2020 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.
  • EFSA Panel Anim Hlth Welf AHAW; Nielsen, Soren Saxmose (2020)
    Rift Valley fever (RVF) is a vector-borne disease transmitted by different mosquito species, especially Aedes and Culex genus, to animals and humans. In November 2018, RVF re-emerged in Mayotte (France) after 11 years. Up to the end of October 2019, 126 outbreaks in animals and 143 human cases were reported. RVF mortality was 0.01%, and the number of abortions reported in polymerase chain reaction (PCR)-positive ruminants was fivefold greater than the previous 7 years. Milk loss production in 2019 compared to 2015-2018 was estimated to be 18%, corresponding to an economic loss of around Euro191,000 in all of Mayotte. The tropical climate in Mayotte provides conditions for the presence of mosquitoes during the whole year, and illegal introductions of animals represent a continuous risk of (re)introduction of RVF. The probability of RVF virus (RVFV) persisting in Mayotte for 5 or more years was estimated to be <10% but could be much lower if vertical transmission in vectors does not occur. Persistence of RVF by vertical transmission in Mayotte and Reunion appears to be of minor relevance compared to other pathways of re-introduction (i.e. animal movement). However, there is a high uncertainty since there is limited information about the vertical transmission of some of the major species of vectors of RVFV in Mayotte and Reunion. The only identified pathways for the risk of spread of RVF from Mayotte to other countries were by infected vectors transported in airplanes or by wind currents. For the former, the risk of introduction of RVF to continental France was estimated to 4 x 10(-6) epidemic per year (median value; 95% CI: 2 x 10(-8); 0.0007), and 0.001 epidemic per year to Reunion (95% CI: 4 x 10(-6); 0.16). For the latter pathway, mosquitoes dispersing on the wind from Mayotte between January and April 2019 could have reached the Comoros Islands, Madagascar, Mozambique and, possibly, Tanzania. However, these countries are already endemic for RVF, and an incursion of RVFV-infected mosquitoes would have negligible impact. (c) 2020 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.
  • Morales-Garcia, Nuria Melisa; Saila, Laura K.; Janis, Christine M. (2020)
    Savanna-like ecosystems were present at high latitudes in North America during much of the Neogene. Present-day African savannas, like the Serengeti, have been proposed to be modern analogs of these paleosavannas, particularly those from the middle Miocene of the Great Plains region of the United States. Both these extant and extinct savannas contain a preponderance of artiodactyl (even-toed ungulate) species; however, the taxonomic composition of each fauna is different. While present-day African savannas are dominated by ruminants (primarily bovids), the Neogene savannas of North America were dominated by a diversity of both camelid and non-bovid ruminant families. This study provides a quantitative test of the similarity of the artiodactyl faunas of the North American Neogene paleosavannas to those of the modern-day African savannas. A correspondence analysis of ecomorphological features revealed considerable overlap between modern and fossil faunas. The morphospace occupation of the extinct North American ruminants falls within that of the African bovids. Some of the extinct camelids also fall within this same morphospace, but many do not, perhaps indicating an environmental difference such as greater aridity in Neogene North America. The diversity and disparity of artiodactyl faunas through the Neogene of North America changed along with changing temperatures and precipitation regimes. The taxonomic and ecomorphological diversity of the Serengeti ruminant fauna is statistically comparable to those North American paleofaunas occurring during or immediately after the Middle Miocene Climatic Optimum (MMCO), but the later, more depauperate faunas are no longer comparable. This study quantitatively analyzes artiodactyl communities as they changed with the cooling and drying trend seen during the Neogene.