Browsing by Subject "salinity"

Sort by: Order: Results:

Now showing items 1-9 of 9
  • Camarena‐Gómez, María Teresa; Ruiz‐González, Clara; Piiparinen, Jonna; Lipsewers, Tobias; Sobrino, Cristina; Logares, Ramiro; Spilling, Kristian (American Society of Limnology and Oceanography, 2021)
    Limnology and Oceanography 66: 1, 255-271
    In parts of the Baltic Sea, the phytoplankton spring bloom communities, commonly dominated by diatoms, are shifting toward the co-occurrence of diatoms and dinoflagellates. Although phytoplankton are known to shape the composition and function of associated bacterioplankton communities, the potential bacterial responses to such a decrease of diatoms are unknown. Here we explored the changes in bacterial communities and heterotrophic production during the spring bloom in four consecutive spring blooms across several sub-basins of the Baltic Sea and related them to changes in environmental variables and in phytoplankton community structure. The taxonomic structure of bacterioplankton assemblages was partially explained by salinity and temperature but also linked to the phytoplankton community. Higher carbon biomass of the diatoms Achnanthes taeniata, Skeletonema marinoi, Thalassiosira levanderi, and Chaetoceros spp. was associated with more diverse bacterial communities dominated by copiotrophic bacteria (Flavobacteriia, Gammaproteobacteria, and Betaproteobacteria) and higher bacterial production. During dinoflagellate dominance, bacterial production was low and bacterial communities were dominated by Alphaproteobacteria, mainly SAR11. Our results suggest that increases in dinoflagellate abundance during the spring bloom will largely affect the structuring and functioning of the associated bacterial communities. This could decrease pelagic remineralization of organic matter and possibly affect the bacterial grazers communities.
  • Teikari, Jonna E.; Hou, Shengwei; Wahlsten, Matti; Hess, Wolfgang R.; Sivonen, Kaarina (2018)
    Salinity is an important abiotic factor controlling the distribution and abundance of Nodularia spumigena, the dominating diazotrophic and toxic phototroph, in the brackish water cyanobacterial blooms of the Baltic Sea. To expand the available genomic information for brackish water cyanobacteria, we sequenced the isolate Nodularia spurn/germ UHCC 0039 using an Illumina-SMRT hybrid sequencing approach, revealing a chromosome of 5,294,286 base pairs (bp) and a single plasmid of 92,326 bp. Comparative genomics in Nostocales showed pronounced genetic similarity among Nodularia spumigena strains evidencing their short evolutionary history. The studied Baltic Sea strains share similar sets of CRISPR-Cas cassettes and a higher number of insertion sequence (IS) elements compared to Nodularia spumigena CENA596 isolated from a shrimp production pond in Brazil. Nodularia spumigena UHCC 0039 proliferated similarly at three tested salinities, whereas the lack of salt inhibited its growth and triggered transcriptome remodeling, including the up-regulation of five sigma factors and the down-regulation of two other sigma factors, one of which is specific for strain UHCC 0039. Down-regulated genes additionally included a large genetic region for the synthesis of two yet unidentified natural products. Our results indicate a remarkable plasticity of the Nodularia salinity acclimation, and thus salinity strongly impacts the intensity and distribution of cyanobacterial blooms in the Baltic Sea.
  • Virta, Leena; Soininen, Janne; Norkko, Alf (2020)
    Aim Global biodiversity loss has raised interest in understanding variation in diversity at different scales. In particular, studies conducted across large spatial gradients are crucial, because they can increase perspectives on how ecological patterns change relative to environmental factors and facilitate predictions of possible responses to environmental change. We explored the full extent of a brackish sea to test the hypotheses that: (a) benthic communities are defined by the limited ranges of species, controlled by varying drivers along a large environmental gradient; (b) the responses of taxonomic and functional community composition and turnover to the environmental gradient are different, thus highlighting the need to include both measures in ecological studies; and (c) diversity reaches the minimum at intermediate salinities (Remane curve) owing to the low adaptation of freshwater and marine species. Location A large environmental and spatial gradient spanning the entire Swedish coastline (c. 2,300 km; salinity 1.2-27.6), the Baltic Sea. Time period August 2018. Major taxa studied Benthic diatoms. Methods We assessed environmental drivers for the communities and calculated the taxonomic and functional alpha and beta diversity along the gradient. We also compared the taxonomic and functional composition and diversity of communities among areas with different salinity. Results We found support for the hypothesis of limited species ranges, because taxonomic beta diversity, mainly induced by changes in salinity and climate, was high, whereas functional beta diversity remained considerably lower, and the composition and diversity of communities, in addition to environmental drivers controlling the communities, differed between regions with different salinity. The lowest taxonomic diversity was found at intermediate salinities of 5-6. Main conclusions These findings advance understanding of large-scale patterns of benthic diversity, emphasize the importance of large gradient studies for a better understanding of general ecological patterns and highlight the vulnerability of brackish water ecosystems as ecologically important tipping-point realms.
  • Jansson, Anna; Klais-Peets, Riina; Griniene, Evelina; Rubene, Gunta; Semenova, Anna; Lewandowska, Aleksandra; Engstrom-Öst, Jonna (2020)
    Functional traits are becoming more common in the analysis of marine zooplankton community dynamics associated with environmental change. We used zooplankton groups with common functional properties to assess long-term trends in the zooplankton caused by certain environmental conditions in a highly eutrophicated gulf. Time series of zooplankton traits have been collected since the 1960s in the Gulf of Riga, Baltic Sea, and were analyzed using a combination of multivariate methods (principal coordinate analysis) and generalized additive models. One of the most significant changes was the considerable increase in the amount of the zooplankton functional groups (FGR) in coastal springtime communities, and dominance shifts from more complex to simpler organism groups-cladocerans and rotifers. The results also show that functional trait organism complexity (body size) decreased considerably due to cladoceran and rotifer increase following elevated water temperature. Salinity and oxygen had negligible effects on the zooplankton community.
  • Kangas, Jonna (Helsingin yliopisto, 2022)
    Climate change is expected to cause salinity change in the Baltic Sea and therefore may affect organisms living in the Baltic such as plankton. The microbial loop is an important part of the plankton food web. It consists of heterotrophic bacteria, nanoflagellates and ciliates and is connected with the classic plankton food chain through interactions with primary producers and mesozooplankton. Therefore, salinity affects the functioning of the microbial food web not only directly, but also through salinity induced changes on primary producers and mesozooplankton. In this master’s thesis I studied the effects of salinity change on microbial loop components bacteria, nanoflagellates and ciliates in an outdoor mesocosm experiment containing four salinity treatments with salinities of 3.5, 5.5, 7.5 and 9.5, three replicas each. The experiment took place offshore at the Tvärminne Zoological Station. Bacteria were sampled from the mesocosms every other day and nanoflagellates and ciliates every 6th day. Bacteria were analysed with the flow cytometer, nanoflagellates with epifluorescent microscopy and ciliates using an inverted microscope. The effects of salinity on microbial loop components were statistically tested using linear mixed effects models. Results of the experiment show that salinity had an indirect effect on microbial loop components through changes in mesozooplankton composition. There were significant differences between high and low salinity treatments in bacteria abundance and composition, the interaction strength between HNFs and bacteria and in the mean cell size of ciliate communities. These were mainly caused by differences in mesozooplankton community structure between salinity treatments, which had cascading effects on the strength of top-down and bottom-up control on the trophic levels of the microbial loop, leading to changes in bacteria abundances and composition. Based on the results of this thesis, more studies are needed to detect the effects that changes in the composition and functioning of the microbial loop might have on the ecosystem. Further research should also focus on the significance of the structure and diversity of the communities within the microbial loop as well as the functional roles of different species in the microbial food web.
  • Nieminen, Emmi (Helsingfors universitet, 2011)
    The aim of the thesis is to assess the fishery of Baltic cod, herring and sprat by simulation over 50 years time period. We form a bioeconomic multispecies model for the species. We include species interactions into the model because especially cod and sprat stocks have significant effects on each other. We model the development of population dynamics, catches and profits of the fishery with current fishing mortalities, as well as with the optimal profit maximizing fishing mortalities. Thus, we see how the fishery would develop with current mortalities, and how the fishery should be developed in order to yield maximal profits. Especially cod stock has been quite low recently and by optimizing the fishing mortality it could get recovered. In addition, we assess what would happen to the fisheries of the species if more favourable environmental conditions for cod recruitment dominate in the Baltic Sea. The results may yield new information for the fisheries management. According to the results the fishery of Baltic cod, herring and sprat are not at the most profitable level. The fishing mortalities of each species should be lower in order to maximize the profits. By fishing mortality optimizing the net present value would be almost three times higher in the simulation period. The lower fishing mortality of cod would result in a cod stock recovery. If the environmental conditions in the Baltic Sea improved, cod stock would recover even without a decrease in the fishing mortality. Then the increased cod stock would restrict herring and sprat stock remarkably, and harvesting of these species would not be as profitable anymore.
  • Elovaara, Samu; Degerlund, Maria; Franklin, Daniel J.; Kaartokallio, Hermanni; Tamelander, Tobias (Springer Link, 2020)
    Hydrobiologia 847 11 (2020)
    Cell death drives the magnitude and community composition of phytoplankton and can result in the conversion of particulate organic carbon to dissolved organic carbon (DOC), thereby affecting carbon cycling in the aquatic food web. We used a membrane integrity probe (Sytox Green) to study the seasonal variation in the percentage of viable cells in the phytoplankton population in an estuary in the northern Baltic Sea for 21 months. The associated dissolved and particulate organic matter concentrations were also studied. The viable fraction of phytoplankton cells varied from < 20% to almost 100%, with an average of 62%. Viability was highest when a single phytoplankton group (diatoms or dinoflagellates) dominated the community. Viability of sinking phytoplankton cells, including some motile species, was in general as high as in surface water. Changes in viability were not closely related to nutrient concentrations, virus-like particle abundance, seawater temperature or salinity. There was a weak but significant negative correlation between viability and DOC, although at this location, the DOC pool was mainly influenced by the inflow of riverine water. This study demonstrates that cell viability, and its relationship with carbon export, is highly variable in the complex microbial populations common within estuarine and coastal marine ecosystems.
  • Teittinen, Anette; Soininen, Janne; Virta, Leena (2022)
    Ecological studies on islands have provided fundamental insights into the mechanisms underlying biodiversity of larger organisms, but we know little about the factors affecting island microbial biodiversity and ecosystem function. We conducted a field experiment on five Baltic Sea islands where we placed aquatic microcosms with different levels of salinity mimicking environmental stress and allowed diatoms to colonize the microcosms via the air. Using structural equation models (SEM), we investigated the interconnections among environmental and dispersal-related factors, diatom biodiversity, and ecosystem productivity (represented by chlorophyll a concentration). We also tested whether the body size structure of the community influences productivity together with biodiversity. In SEMs, we found no relationship between species richness or evenness and productivity. However, productivity increased with increasing mean body size of species in the communities. The effects of environmental stress on both biodiversity and ecosystem productivity were highlighted as species richness and evenness declined, whereas productivity increased at the highest salinity levels. In addition to salinity, wind exposure affected both biodiversity metrics and productivity. This study provides new insights into microbial community assembly in a field experimental setting and the relationship between biodiversity and ecosystem function. Our results indicate that salinity presents a strong abiotic filter, leading to communities that may be species poor, yet comprise salinity-tolerant and relatively productive species at high salinity. Our findings also emphasize the importance of mean community body size in mediating the effects of environmental conditions on productivity and suggest that this trait should be considered more broadly in biodiversity-ecosystem function studies.
  • Lakka, Hanna-Kaisa (Helsingfors universitet, 2013)
    Lepidurus arcticus (Pallas, 1793) is a keystone species in High Arctic ponds, which are exposed to a wide range of environmental stressors. This thesis provides information on the ecology of this little studied species by paying particular focus on the sensitivity of L. arcticus to acidification and climate change. Respiration, reproduction, olfaction, morphology, salinity and pH tolerance of the species were studied in the laboratory and several environmental parameters were measured in its natural habitats in Arctic ponds. Current global circulation models predict 2–2.4 °C increase in summer temperatures on Spitsbergen, Svalbard, Norway. The L. arcticus respiration activity was tested at different temperatures (3.5, 10, 16.5, 20, 25 and 30 °C). The results show that L. arcticus is clearly adapted to live in cold water and have a temperature optimum at +10 °C. This species should be considered as stenothermal, because it seems to be able to live only within a narrow temperature range. L. arcticus populations seem to have the capacity to respond to the ongoing climate change on Spitsbergen. Changes can be seen in the species' reproductive capacity and in the individuals' body size when comparing results with previous studies on Spitsbergen and in other Arctic areas. Effective reproduction capacity was a unique feature of the L. arcticus populations on Spitsbergen. L. arcticus females reached sexual maturity at a smaller body size and sexual dimorphism appeared in smaller animals on Spitsbergen than anywhere else in the subarctic or Arctic regions. L. arcticus females were able to carry more eggs (up to 12 eggs per female) than has been observed in previous studies. Another interesting feature of L. arcticus on Spitsbergen was their potential to grow large, up to 39.4 mm in total length. Also cannibalistic behaviour seemed to be common on Spitsbergen L. arcticus populations. The existence of different colour morphs and the population-level differences in morphology of L. arcticus were unknown, but fascinating characteristic of this species. Spitsbergen populations consisted of two major (i.e. monochrome and marbled) and several combined colour morphs. Third interesting finding was a new disease for science which activated when the water temperature rose. I named this disease to Red Carapace Disease (RCD). This High Arctic crustacean lives in ponds between the Arctic Ocean and glaciers, where the marine environment has a strong impact on the terrestrial and freshwater ecosystems. The tolerance of L. arcticius to increased water salinity was determined by a LC50 -test. No mortality occurred during the 23 day exposure at low 1–2 ‰ water salinity. A slight increase in water salinity (to 1 ‰) speeded up the L. arcticus shell replacement. The observations from natural populations supported the hypothesis that the size of the animals increases considerably in low 1.5 ‰ salt concentrations. Thus, a small increase in water salinity seems to have a positive impact on the growth of this short-lived species. Acidification has been a big problem for many crustaceans, invertebrates and fishes for several decades. L. arcricus does not make an exception. Strong acid stress in pH 4 caused a high mortality of mature L. arcticus females. The critical lower limit of pH was 6.1 for the survival of this acid sensitive species. Thus, L. arcticus populations are probably in danger of extinction due to acidification of three ponds on Spitsbergen. A slight drop (0.1–1.0) in pH values can wipe out these L. arcticus populations. The survival of L. arcticus was strongly related to: (1) the water pH, (2) total organic carbon (TOC) and pH interaction, (3) the water temperature and (4) the water salinity. Water pH and TOC values should be monitored in these ponds and the input of acidifying substances in ponds should be prevented.