Browsing by Subject "sammalet"

Sort by: Order: Results:

Now showing items 1-20 of 27
  • Kellomäki, Seppo; Hari, Pertti; Väisänen, Eero (Suomen metsätieteellinen seura, 1977)
  • Lindholm, Tapio; Jakovlev, Jevgeni; Kravchenko, Alexey (Finnish Environment Institute, 2015)
    Reports of the Finnish Environment Institute 40/2014
    Zaonezhye Peninsula (Zaonezhsky Peninsula; Заонежский полуостров in Russian transcription) is situated on the northwestern coast of Lake Onega in the Republic of Karelia, Russia. The territory of Zaonezhye is unique in that it contains nearly every type of terrain and unconsolidated sediment known in the vast expanses of northwest Russia. It is also eastern part of Fennoscandian shield. It is characterized by a high diversity of basic limestone and carbonate rocks that determine the fertility of local soils as well as the unique diversity of habitats, flora and fauna. Numerous rare calciphile plant and lichen species are found here, as well as rich, eutrophic wetlands. Long-term farming and animal husbandry have led to a large number of grassland communities in the area. As a result, a mosaic structure of diverse habitats has evolved here. Europe’s second largest lake, Lake Onega, with its clear and deep waters also affect the local climate, making it milder. This report provides for the first time detailed species lists of vascular plants, bryophytes, lichens, wood-growing fungi and insects covering the entire Zaonezhye Peninsula, Kizhi archipelago and other adjacent islands. The most important sites for protection were observed, and six new nature monuments in the southern and southerneast parts of Zaonezhye Peninsula are recommended to be established. This publication contents following articles characterizing nature of Zaonezhye area: 1. Geology and physical geography: 1.1.Geological description, 1.2. Geomorphology and Quaternary deposits, 1.3. Hydrological characteristics, 1.4. Soil cover, 1.5. Palaeogeography, 1.6. Existing and planned protected areas; 2. Landscapes and ecosystems: 2.1. Modern landscapes of Zaonezhye, 2.2. Landscape structure, 2.3. Structure of the forest covered land and forest stands, 2.4. Forest structures, 2.5. Mires, 2.6. Meadows; 3. Flora and fauna: 3.1. Vascular plants, 3.2. Bryophyte flora, 3.3 Species list of lichens and allied fungi, 3.4. Red listed and indicator lichens, 3.5. Aphyllophoroid fungi and 3.6. Insect fauna. 3.7. Localities in Zaonezhye area used in species lists of vascular plants, bryophytes, lichens, fungi and insects, and their toponyms.
  • Halmeenpää, Hanna; Niemelä, Pirjo; Alahuhta, Janne; Dvornikova, Natalya; Erkinaro, Heikki; Heikkinen, Kaisa; Kotov, Sergey; Masyk, Natalya; Meissner, Kristian; Riihimäki, Juha; Vuori, Kari-Matti; Zueva, Marina (North Ostrobothnia Regional Environment Centre, 2007)
    The Finnish Environment 28/2007
    The Kola River is situated in Northwestern Russia, Kola Peninsula, which is an area with about 70 year long history of copper and nickel mining and smelting. However, environmental effects on the Kola River, caused by industry and other human activities, are not studied thoroughly. Area of the Kola River basin is 3850 km2. The river flows 83 km from south to north and enters the Kola Bay of the Barents Sea in front of the Kola City. The Kola River is vital for the reproduction of salmon and it is also an important source of drinking water for about half a million people in the city of Murmansk and in the surrounding settlements. In the Kola Water Quality -project in years 2001–2004 one the main objectives was to define the ecological status of the Kola River. The Näätämöjoki River in northern Finland and Norway was surveyed as a reference area. This publication includes ecological studies carried out by North Ostrobothnia Regional Environment Centre (NOREC, Finland) and The Murmansk Areal Department for Hydrometeorology and Environmental Monitoring (MUGMS, Russia). Chapters concerning macroinvertebrate studies were written by Kristian Meissner (NOREC/SYKE). Studies on macrozoobenthos after federal Russian hydrobiological monitoring methods are grouped in separate chapters and were reported by Sergey Kotov (MUGMS). Chapters concerning fish communities were written by Heikki Erkinaro (NOREC, Finnish Game and Fisheries Research Institute). Diatom community analyses were reported by Hanna Halmeenpää and Pirjo Niemelä (NOREC). Chapters concerning hydromorphological state of the river (River Habitat Survey) were written by Janne Alahuhta (NOREC) and chapters on macrophyte survey by Juha Riihimäki (Finnish Environment Institute). Studies on metal concentrations in aquatic bryophytes were reported by Hanna Halmeenpää (NOREC) and Kari-Matti Vuori (Finnish Environment Institute). Chapters concerning bacterioplankton and phytoplankton were written by Natalya Masuk (MUGMS), chapters on zooplankton by Natalya Dvornikova (MUGMS). Chapters concerning physical and chemical water quality of the rivers Kola and Näätämöjoki were written by Marina Zueva (MUGMS) and Hanna Halmeenpää (NOREC). Hanna Halmeenpää and Pirjo Niemelä (NOREC) took the responsibility of editing the report and writing of common chapters. On grounds of the ecological studies, the Kola River can be divided into three separate areas. At the upper river sections (K2-K3) the ecological status ranged from good to moderate. Signs on nutrient and metal (copper, nickel) loading could be detected both in water quality and in aquatic organisms. The ecological status of the mid-section (K4-K8) of the Kola River basin ranged from good to high. No major human impact could be seen. The estuary section (K9-K12) of the Kola River represented the moderate ecological status. This was probably caused by small, heavily polluted tributaries (Varlamov, Medvegiy and Zemlanoy) draining organic load and nutrient rich waters into main flow and also by other anthropogenic loading along the lower river section. The ecological status of the reference river Näätämöjoki was high on grounds of all the biological parameters used in this study.
  • Mäkipää, Raisa (The Finnish Society of Forest Science and The Finnish Forest Research Institute, 1994)
    Forest ecosystems may accumulate large amounts of nitrogen in the biomass and in the soil organic matter. However, there is increasing concern that deposition of inorganic nitrogen compounds from the atmosphere will lead to nitrogen saturation; excess nitrogen input does not increase production. The aim of this study was to determine the long-term changes caused by nitrogen input on accumulation of nitrogen in forest soils and in ground vegetation. The fertilization experiments used in this study were established during 1958–1962. They were situated on 36- to 63-year old Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karsten) stands of different levels of fertility. The experiments received nitrogen fertilization 5–7 times over a 30-year period, and the total input of nitrogen was 596–926 kg/ha. Nitrogen input increased the amount of organic matter in the humus layer and the nitrogen concentration in the organic matter. Furthermore, the total amounts of nutrients (N, P, K, Ca and Mg) bound by the humus layer increased due to the increase in the amount of organic matter. However, nitrogen input decreased the biomass of ground vegetation. The nitrogen concentration of the plant material on the nitrogen-fertilized plots was higher than that on the control plots, but the amount of nutrients bound by ground vegetation decreased owing to the drastic decrease in the biomass of mosses. Ground vegetation does not have the potential to accumulate nitrogen, because vegetation is dominated by slow-growing mosses and dwarf shrubs, which do not benefit from nitrogen input.
  • Hill, Matthew J.; Heino, Jani; White, James C.; Ryves, David B.; Wood, Paul J. (2019)
    Biological Conservation 237: 348-357
    Understanding the spatial patterns and environmental drivers of freshwater diversity and community structure is a key challenge in biogeography and conservation biology. However, previous studies have focussed primarily on taxonomic diversity and have largely ignored the phylogenetic and functional facets resulting in an incomplete understanding of the community assembly. Here, we examine the influence of local environmental, hydrological proximity effects, land-use type and spatial structuring on taxonomic, functional and phylogenetic (using taxonomic relatedness as a proxy) alpha and beta diversity (including the turnover and nestedness-resultant components) of pond macroinvertebrate communities. Ninety-five ponds across urban and non-urban land-uses in Leicestershire, UK were examined. Functional and phylogenetic alpha diversity were negatively correlated with species richness. At the alpha scale, functional diversity and taxonomic richness were primarily determined by local environmental factors while phylogenetic alpha diversity was driven by spatial factors. Compositional variation (beta diversity) of the different facets and components of functional and phylogenetic diversity were largely determined by local environmental variables. Pond surface area, dry phase length and macrophyte cover were consistently important predictors of the different facets and components of alpha and beta diversity. Our results suggest that pond management activities aimed at improving biodiversity should focus on improving and/or restoring local environmental conditions. Quantifying alpha and beta diversity of the different biodiversity facets facilitates a more accurate assessment of patterns in diversity and community structure. Integrating taxonomic, phylogenetic and functional diversity into conservation strategies will increase their efficiency and effectiveness, and maximise biodiversity protection in human-modified landscapes.
  • Laine, Anna M.; Lindholm, Tapio; Nilsson, Mats; Kutznetsov, Oleg; Jassey, Vincent E. J.; Tuittila, Eeva-Stiina (John Wiley & Sons Ltd, 2021)
    Journal of Ecology 109, 4 (2021), 1774–1789
    1. Most of the carbon accumulated into peatlands is derived from Sphagnum mosses. During peatland development, the relative share of vascular plants and Sphagnum mosses in the plant community changes, which impacts ecosystem functions. Little is known on the successional development of functional plant traits or functional diversity in peatlands, although this could be a key for understanding the mechanisms behind peatland resistance to climate change. Here we aim to assess how functionality of successive plant communities change along the autogenic peatland development and the associated environmental gradients, namely peat thickness and pH, and to determine whether trait trade-offs during peatland succession are analogous between vascular plant and moss communities. 2. We collected plant community and trait data on successional peatland gradients from post-glacial rebound areas in coastal Finland, Sweden and Russia, altogether from 47 peatlands. This allowed us to analyse the changes in community-weighted mean trait values and functional diversity (diversity of traits) during peatland development. 3. Our results show comparative trait trade-offs from acquisitive species to conservative species in both vascular plant and Sphagnum moss communities during peatland development. However, mosses had higher resistance to environmental change than vascular plant communities. This was seen in the larger proportion of intraspecific trait variation than species turnover in moss traits, while the proportions were opposite for vascular plants. Similarly, the functional diversity of Sphagnum communities increased during the peatland development, while the opposite occurred for vascular plants. Most of the measured traits showed a phylogenetic signal. More so, the species common to old successional stages, namely Ericacae and Sphagna from subgroup Acutifolia were detected as most similar to their phylogenetic neighbours. 4. Synthesis. During peatland development, vegetation succession leads to the dominance of conservative plant species accustomed to high stress. At the same time, the autogenic succession and ecological engineering of Sphagna leads to higher functional diversity and intraspecific variability, which together indicate higher resistance towards environmental perturbations.
  • Pykälä, Juha (Elsevier, 2019)
    Global Ecology and Conservation 18 (2019), e00610
    Why populations of threatened species disappear is among the key questions in conservation biology. However, very few local and regional studies have attempted to quantify the importance of the various causes. In this investigation, the status of the populations of threatened vascular plants, bryophytes and lichens found between the years 1860–1979 in a national biodiversity hot spot in SW Finland was studied during the years 1990–2008. Of the populations, 82% had disappeared and 18% were re-discovered. The disappearance rate of populations differed between habitats: exceeding 80% in most habitat types whilst being lowest on rock outcrops (58%). Complete destruction of all locally suitable habitats was the main reason for the disappearance of the populations (73%) concerned. Habitat deterioration (including partial habitat loss) was identified as the reason for the disappearance for 22% of the populations. Only for 5% of the populations could it not be revealed whether habitat quality had changed or not, but deterioration of habitat quality or habitat loss is possible even in these cases. For none of the disappeared populations was no change in habitat quality verified. In most cases, habitat loss and deterioration were caused by agriculture or forestry. These results support the conclusion that vascular plant, bryophyte and lichen populations in the boreal landscape have disappeared directly because their habitats have disappeared, declined in size or deteriorated due to forestry, agriculture, construction, mining and pollution. More subtle changes in habitat quality, fragmentation, problems related to small population size per se and other reasons may have contributed to only a few disappearances of local populations. The disappearance rate was similar between the study groups, but the relative importance of reasons for disappearance was different. The results emphasize the importance of habitat protection for threatened vascular plants, bryophytes and lichens.
  • Helsingin yliopisto. Kasvimuseo.; Saelan, Th. (Thiodolf), 1834-1921.; Bomansson, J. O. (John Oskar), 1838-1906.; Societas pro Fauna et Flora Fennica.; Kihlman, A. Osw.; Hjelt, Hj.; Brotherus, V. F. (Ex officina typographica heredum J. Simelii, 1889)
  • Virtanen, Viivi (University of Helsinki, 1994)
  • Juutinen, Riikka; Kotiaho, Janne S. (Suomen ympäristökeskus, 2009)
    Suomen ympäristö 19/2009
    Lähteiköt ovat harvinaistuvia pohjavesivaikutteisia luontotyyppejä, joissa esiintyy erikoistunutta ja uhanalaistuvaa sammallajistoa. Etelä-Suomen lähteistä luonnontilaisiksi on arvioitu tietolähteestä riippuen 5 - 20 prosenttia. Ihmistoiminnan vaikutuksista on kuitenkin vain vähän tutkimustietoa. Tutkimuksessa selvitettiin (1) luonnontilan ja lajiston välisiä yhteyksiä, (2) 50 vuoden aikana tapahtuneita muutoksia luonnontilassa ja lajistossa, (3) metsälain tarkoittaman erityisen tärkeän elinympäristön sisältävien lähteikköjen ja muiden lähteikköjen sekä (4) lähdevaikutteisten ojien ja muiden lähdepintojen eroja. Lähteiden heikon luonnontilan havaittiin ilmenevän, paitsi luonnontilaisten lähteiden pienenä määränä, myös lähdevaikutteisten ojien runsautena. Luonnontilaisuuden havaittiin nostavan lajimäärää ja sammalten peittävyyttä. Luonnontilaltaan erilaisilla lähteillä on tutkimuksen perusteella kuitenkin hyvin samankaltainen sammalyhteisö, eivätkä uhanalaisten lajien esiintymät keskity erityisesti luonnontilaisille lähteille. Lähteen suojeluarvon johtaminen luonnontilaisuudesta voi näin ollen olla ongelmallista. Luonnontila on heikentynyt voimakkaasti vuoteen 1953 verrattuna. Yksikään vuonna 1953 täysin luonnontilassa olleista lähteistä ei ole säilynyt täysin luonnontilaisena ja 17 lähdettä (22%) on tuhoutunut täysin. Lähes 70 % lähteiden ympäristöistä oli ojitettu. Lähteikköjen lajimäärä, lähdelajien määrä ja sammalten peittävyys ovat laskeneet. Lajimäärien lasku ei ole tulosten perusteella seurausta luonnontilan laskusta, vaan se selittyy todennäköisesti tietyntyyppisten, erityisesti lettomaisten, lähteiden harvinaistumiseen. Useiden lähde- ja lettolajien peittävyydet ovat laskeneet ja toiset ovat harvinaistuneet. Muutos on ollut lettosammalilla vielä lähdesammaliakin suurempaa. Runsastuneet tai yleistyneet lajit ovat yleis- tai luhtasammalia. Metsäkeskuksen määrittämän metsälain erityisen tärkeän elinympäristön (METE-kohteen) sisältävät lähteiköt ovat useilta ominaisuuksiltaan (sammalten lajimäärä, lähdesammalten ja uhanalaisten sammalten määrä sekä sammalyhteisön koostumus) muiden lähteikköjen kaltaisia. Uhanalaisten lajien esiintymiä jää runsaasti METE-kohteiden ulkopuolelle. Tulosten perusteella näyttää myös siltä, että huomattava osa luonnontilaisista, lain kriteerit täyttävistä lähteistä on vielä löytämättä. Erilaiset lähteiköt eivät ole tasaisesti edustettuina: tihkupintojen osuus METE-kohteissa on huomattavan pieni. METE-kohteiksi määritetään tulosten valossa kenties helpommin viileävetisiä allikkolähteitä kuin hankalammin tunnistettavia tihkupintoja. Lähdevaikutteisten ojien lajimäärä ja lajistokoostumus ovat ojien ulkopuolisten, luonnontilaisempien lähteikköpintojen kaltaiset. Ojassa sammalten peittävyys on kuitenkin alempi. Ojiin voi kehittyä ajan kanssa monimuotoista ja edustavaakin lähdesammalkasvillisuutta.
  • Kiani, Sepideh; Lehosmaa, Kaisa; Kløve, Bjørn; Ronkanen, Anna-Kaisa (Elsevier BV, 2022)
    Ecological Engineering
    To remove nitrogen in cold conditions, we studied new nature-based treatment solutions using six pilot-scale reactors. The pilots were woodchip bioreactor (WBR), aquatic floating hook-moss (Warnstorfia fluitans) (MBR), and a combined woodchip and floating hook-moss hybrid unit (HBR) with an improved hydraulic design. The experiment was run in a climate room at temperatures of 10 °C and 5 °C and using mine water from two sites located in northern Finland. Unlike traditional horizontal flow woodchip bioreactors, in this study the hydraulic efficiency was improved from poor (λ = 0.06) in the woodchip bioreactor to satisfactory (λ = 0.51) in the hybrid unit by inserting two inner plates along the water flow and adding floating hook-moss. The hybrid bioreactor revealed the highest capability of nitrogen removal in all inorganic forms at T ≤ 10 °C with a mean HRT of 70.5 h. On average, 30–78 % of dissolved inorganic nitrogen was removed in the hybrid unit, which was 2 and 3 times more than in units consisting only of woodchip or floating hook-moss. The hybrid bioreactor revealed a maximum NO−3-N removal rate of 1.0–5.2 g m−3 d−1 and a 21.8–99.7 % removal efficiency for an average incoming NO−3-N load of 40 g d−1. The maximum NH+4-N removal efficiency of 75.6 and 53 % took place in HBR and MBR, respectively, when the incoming NH+4-N load was 23.6 ± 0.7 g d−1 at 10 °C. Over the 154 days of the experiment, the hybrid unit removed a total of 2.95 kg DIN-N, which was 0.8 kg higher than the sum of the DIN-N mass removed in the individual woodchip (1.7 kg) and moss units (0.55 kg). The nitrogen content of the aquatic moss was higher in the hybrid unit compared to the moss unit, showing a higher contribution of N plant uptake. Overall, our results suggest that combining woodchips and aquatic moss in a hybrid unit with improved hydraulic efficiency using inner walls may enhance nitrogen removal in cold climate conditions.
  • Fieandt, C. F. (1836)
  • Urbanski, Marjo (University of Helsinki, 1995)
  • Linkola, K. (Vanamo, 1913)
    Vanamon kirjasia ; 6