Browsing by Subject "shrub"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Boulanger-Lapointe, Noemie; Järvinen, Antero; Partanen, Rauni; Herrmann, Thora Martina (2017)
    Annual fluctuations in the abundance of wild berries have repercussions on animals and humans who depend on this important resource. Although studies have tried to disentangle the effect of climate and herbivores on inter-annual berry yield, there are still many uncertainties as to which factors are driving productivity. In this research, we evaluated the effect of climate and predation by rodents and moths on the abundance of bilberry (Vaccinium myrtillus) flowers and berries at the Kilpisjarvi Biological Station in northwest Finnish Lapland. The data were collected from 1973 to 2014 in a forest and an alpine site, both undisturbed by human activities. This dataset is unique due to the length of the sampling period, the availability of flower, berry, and rodent abundance data as well as the undisturbed nature of the habitat. Previous summer temperatures, the abundance of rodents, and the presence of a moth outbreak were complementary factors explaining the abundance of flowers. Herbivores had a larger impact on flower production than climate, but both variables were important to understand reproductive effort. Contrary to results from experimental studies, warmer winters did not significantly influence reproductive success. The abundance of fruits was strongly correlated with pollinator activity; the forest site, with a larger pollinator network, had a higher reproductive success and spring conditions were linked to inter-annual variability in fruit production. Our results illustrate the importance of the location of the population within the species distribution range to understand plant sensitivity to climatic fluctuations with fruit production only influenced by current year summer temperatures at the alpine site. Finally, we observed a general increase in flower and fruit production at the alpine site, which was driven by large yields since the early 1990s. Fruit production at the forest site was comparatively stable throughout the study period.
  • Matkala, Laura (Helsingfors universitet, 2013)
    Boreal peatlands contain approximately one third of the global soil carbon and are considered net sinks of atmospheric CO2. Water level position is one of the main regulators of CO2 fluxes in northern peatlands because it controls both the thickness of the aerobic layer in peat and plant communities. However, little is known about the role of different plant functional groups and their possible interaction with changing water level in boreal peatlands with regard to CO2 cycling. Climate change may also accelerate changes in hydrological conditions, changing both aerobic conditions and plant communities. To help answer these questions, this study was conducted at a mesocosm facility in Northern Michigan where the aim was to experimentally study the effects of water levels, plant functional groups (sedges, shrubs and mosses) and the possible interaction of these on the CO2 cycle of a boreal peatland ecosystem. The results indicate that Ericaceous shrubs are important in the boreal peatland CO2 cycle. The removal of these plants decreased ecosystem respiration, gross ecosystem production and net ecosystem exchange rates, whereas removing sedges did not show any significant differences in the flux rates. The water level did not significantly affect the flux rates. The amount of aboveground sedge biomass was higher in the low water level sedge treatment plots compared to the high water level sedge plots, possibly because the lowered water level and the removal of Ericaceae released nutrients for sedges to use up.