Browsing by Subject "social behavior"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Nordgreen, Janicke; Edwards, Sandra A.; Boyle, Laura Ann; Bolhuis, J. Elizabeth; Veit, Christina; Sayyari, Amin; Marin, Daniela E.; Dimitrov, Ivan; Janczak, Andrew M.; Valros, Anna (2020)
    Sickness can change our mood for the worse, leaving us sad, lethargic, grumpy and less socially inclined. This mood change is part of a set of behavioral symptoms called sickness behavior and has features in common with core symptoms of depression. Therefore, the physiological changes induced by immune activation, for example following infection, are in the spotlight for explaining mechanisms behind mental health challenges such as depression. While humans may take a day off and isolate themselves until they feel better, farm animals housed in groups have only limited possibilities for social withdrawal. We suggest that immune activation could be a major factor influencing social interactions in pigs, with outbreaks of damaging behavior such as tail biting as a possible result. The hypothesis presented here is that the effects of several known risk factors for tail biting are mediated by pro-inflammatory cytokines, proteins produced by the immune system, and their effect on neurotransmitter systems. We describe the background for and implications of this hypothesis.
  • Raulo, Aura; Dantzer, Ben (2018)
    The causes and consequences of individual differences in animal behavior and stress physiology are increasingly studied in wild animals, yet the possibility that stress physiology underlies individual variation in social behavior has received less attention. In this review, we bring together these study areas and focus on understanding how the activity of the vertebrate neuroendocrine stress axis (HPA-axis) may underlie individual differences in social behavior in wild animals. We first describe a continuum of vertebrate social behaviors spanning from initial social tendencies (proactive behavior) to social behavior occurring in reproductive contexts (parental care, sexual pair-bonding) and lastly to social behavior occurring in nonreproductive contexts (nonsexual bonding, group-level cooperation). We then perform a qualitative review of existing literature to address the correlative and causal association between measures of HPA-axis activity (glucocorticoid levels or GCs) and each of these types of social behavior. As expected, elevated HPA-axis activity can inhibit social behavior associated with initial social tendencies (approaching conspecifics) and reproduction. However, elevated HPA-axis activity may also enhance more elaborate social behavior outside of reproductive contexts, such as alloparental care behavior. In addition, the effect of GCs on social behavior can depend upon the sociality of the stressor (cause of increase in GCs) and the severity of stress (extent of increase in GCs). Our review shows that the while the associations between stress responses and sociality are diverse, the role of HPA-axis activity behind social behavior may shift toward more facilitating and less inhibiting in more social species, providing insight into how stress physiology and social systems may co-evolve.
  • Piirainen, Sami; Chithanathan, Keerthana; Bisht, Kanchan; Piirsalu, Maria; Savage, Julie Conner; Tremblay, Marie-Eve; Li Tian (2021)
    Microglial activation has been regarded mainly as an exacerbator of stress response, a common symptom in psychiatric disorders. This study aimed to determine whether microglia contribute to adaptive response of the brain and behavior toward stress using a mild and adaptive stress model - chronic restraint stress (CRS) - with wild type (WT) and CX3CR1-GFP (CX3CR1[G]) mice and human schizophrenia patients' data. Our results revealed that CRS did not exacerbate anxiety and depressive-like behaviors, but instead strengthened social dominance and short-term spatial learning in WT mice. Compared to WT and CX3CR1(+/G) heterozygous mice, CX3CR1(G/G) homozygotes were subordinate in social interaction before and after CRS. Microglia in WT mice underwent a series of region-specific changes involving their phagocytosis of presynaptic vesicular glutamate transporter 2 protein, contacts with synaptic elements, CD206(+)microglial proportion, and gene expressions such as Cx3cr1. By contrast, CX3CR1-deficient microglia showed decreased CD206(+) while increased MHCII+ subpopulations and hypo-ramification in the hippocampus, as well as sensitized polarization and morphological change in response to CRS. Furthermore, CD206(+) microglial abundancy was positively correlated with social dominancy and microglial ramification in CX3CR1-GFP mice. Moreover, CX3CR1 mRNA level was reduced in CRS-treated mouse brains and showed a smaller interactome with other brain genes in the dorsal-lateral prefrontal cortices of patients with schizophrenia. Our findings overall highlight microglia and its receptor CX3CR1 as key contributors in regulation of social behavioral adaptation to chronic stress.
  • Veit, Christina; Janczak, Andrew M.; Ranheim, Birgit; Vas, Judit; Valros, Anna; Sandercock, Dale A.; Piepponen, Petteri; Dulgheriu, Daniela; Nordgreen, Janicke (2021)
    Poor health is a risk factor for damaging behaviors, but the mechanisms behind this link are unknown. Injection of pigs with lipopolysaccharide (LPS) can be used to model aspects of poor health. Recent studies have shown that LPS-injected pigs perform more tail- and ear-directed behavior compared to saline-injected pigs and suggest that pro-inflammatory cytokines may play a role in these behaviors. The aims of this study were to test the effect of LPS on the social behavior of pigs and the neurotransmitters and modulators in their brains and to test the effect of a nonsteroidal anti-inflammatory drug on the effects of LPS. Fifty-two female pigs (11-12 weeks) were allocated to four treatments comprising two injections: saline-saline (SS), saline-LPS (SL), ketoprofen-saline (KS), and ketoprofen-LPS (KL). Activity was scan-sampled every 5 min for 6 h after the last injection in the pen. Social behavior was observed continuously in 10 x 15-min bouts between 8 a.m. and 5 p.m. 1 day before (baseline) and 1 and 2 days after the injection. Saliva was analyzed for cortisol and plasma for tryptophan and kynurenine. The frontal cortex, hippocampus, hypothalamus, and brain stem were sampled 72 h after the injection and analyzed for cytokines and monoamines. LPS activated the HPA axis and decreased the activity within 6 h after the injection. Ketoprofen lowered the effect of LPS on cortisol release and attenuated the behavioral signs of sickness in challenged pigs. SL pigs manipulated the ears of their pen mates significantly longer than SS pigs 2 days after the injection. LPS had no observed effect on IFN-gamma, TNF-alpha, and IL-18. At 72 h after the injection, plasma tryptophan was depleted in SL pigs, and tryptophan and kynurenine concentrations in the frontal cortex and brain stem of SL pigs were significantly lower compared to those in SS pigs. Dopamine concentrations in the hypothalamus of SL pigs were significantly lower compared to those in SS pigs. Serotonin concentrations in the hypothalamus and noradrenaline concentrations in the hippocampus of SL pigs were significantly lower compared to those in KL pigs. In conclusion, LPS influenced the different neurotransmitters and modulators in the brain that are hypothesized to play an important role in the regulation of mood and behavior.