Browsing by Subject "species complex"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Peris Tamayo, Ana-Maria; Devineau, Olivier; Praebel, Kim; Kahilainen, Kimmo K.; ostbye, Kjartan (2020)
    Adaptive radiation is the diversification of species to different ecological niches and has repeatedly occurred in different salmonid fish of postglacial lakes. In Lake Tinnsjoen, one of the largest and deepest lakes in Norway, the salmonid fish, Arctic charr (Salvelinus alpinus(L.)), has likely radiated within 9,700 years after deglaciation into ecologically and genetically segregated Piscivore, Planktivore, Dwarf, and Abyssal morphs in the pelagial, littoral, shallow-moderate profundal, and deep-profundal habitats. We compared trait variation in the size of the head, the eye and olfactory organs, as well as the volumes of five brain regions of these four Arctic charr morphs. We hypothesised that specific habitat characteristics have promoted divergent body, head, and brain sizes related to utilized depth differing in environmental constraints (e.g., light, oxygen, pressure, temperature, and food quality). The most important ecomorphological variables differentiating morphs were eye area, habitat, and number of lamellae. The Abyssal morph living in the deepest areas of the lake had the smallest brain region volumes, head, and eye size. Comparing the olfactory bulb with the optic tectum in size, it was larger in the Abyssal morph than in the Piscivore morph. The Piscivore and Planktivore morphs that use more illuminated habitats have the largest optic tectum volume, followed by the Dwarf. The observed differences in body size and sensory capacities in terms of vision and olfaction in shallow and deepwater morphs likely relates to foraging and mating habitats in Lake Tinnsjoen. Further seasonal and experimental studies of brain volume in polymorphic species are needed to test the role of plasticity and adaptive evolution behind the observed differences.
  • Young, J. Peter W.; Moeskjaer, Sara; Afonin, Alexey; Rahi, Praveen; Maluk, Marta; James, Euan K.; Cavassim, Maria Izabel A.; Rashid, M. Harun-or; Aserse, Aregu Amsalu; Perry, Benjamin J.; Wang, En Tao; Velazquez, Encarna; Andronov, Evgeny E.; Tampakaki, Anastasia; Flores Felix, Jose David; Rivas Gonzalez, Raul; Youseif, Sameh H.; Lepetit, Marc; Boivin, Stephane; Jorrin, Beatriz; Kenicer, Gregory J.; Peix, Alvaro; Hynes, Michael F.; Ramirez-Bahena, Martha Helena; Gulati, Arvind; Tian, Chang-Fu (2021)
    Bacteria currently included in Rhizobium leguminosarum are too diverse to be considered a single species, so we can refer to this as a species complex (the Rlc). We have found 429 publicly available genome sequences that fall within the Rlc and these show that the Rlc is a distinct entity, well separated from other species in the genus. Its sister taxon is R. anhuiense. We constructed a phylogeny based on concatenated sequences of 120 universal (core) genes, and calculated pairwise average nucleotide identity (ANI) between all genomes. From these analyses, we concluded that the Rlc includes 18 distinct genospecies, plus 7 unique strains that are not placed in these genospecies. Each genospecies is separated by a distinct gap in ANI values, usually at approximately 96% ANI, implying that it is a 'natural' unit. Five of the genospecies include the type strains of named species: R. laguerreae, R. sophorae, R. ruizarguesonis, "R. indicum" and R. leguminosarum itself. The 16S ribosomal RNA sequence is remarkably diverse within the Rlc, but does not distinguish the genospecies. Partial sequences of housekeeping genes, which have frequently been used to characterize isolate collections, can mostly be assigned unambiguously to a genospecies, but alleles within a genospecies do not always form a clade, so single genes are not a reliable guide to the true phylogeny of the strains. We conclude that access to a large number of genome sequences is a powerful tool for characterizing the diversity of bacteria, and that taxonomic conclusions should be based on all available genome sequences, not just those of type strains.