Browsing by Subject "spinal cord injury"

Sort by: Order: Results:

Now showing items 1-7 of 7
  • Sathyan, Sabin; Tolmacheva, Aleksandra; Tugin, Sergei; Mäkelä, Jyrki P.; Shulga, Anastasia; Lioumis, Pantelis (2021)
    Paired associative stimulation (PAS) is a stimulation technique combining transcranial magnetic stimulation (TMS) and peripheral nerve stimulation (PNS) that can induce plastic changes in the human motor system. A PAS protocol consisting of a high-intensity single TMS pulse given at 100% of stimulator output (SO) and high-frequency 100-Hz PNS train, or "the high-PAS " was designed to promote corticomotoneuronal synapses. Such PAS, applied as a long-term intervention, has demonstrated therapeutic efficacy in spinal cord injury (SCI) patients. Adding a second TMS pulse, however, rendered this protocol inhibitory. The current study sought for more effective PAS parameters. Here, we added a third TMS pulse, i.e., a 20-Hz rTMS (three pulses at 96% SO) combined with high-frequency PNS (six pulses at 100 Hz). We examined the ability of the proposed stimulation paradigm to induce the potentiation of motor-evoked potentials (MEPs) in five human subjects and described the safety and tolerability of the new protocol in these subjects. In this study, rTMS alone was used as a control. In addition, we compared the efficacy of the new protocol in five subjects with two PAS protocols consisting of PNS trains of six pulses at 100 Hz combined with (a) single 100% SO TMS pulses (high-PAS) and (b) a 20-Hz rTMS at a lower intensity (three pulses at 120% RMT). The MEPs were measured immediately after, and 30 and 60 min after the stimulation. Although at 0 and 30 min there was no significant difference in the induced MEP potentiation between the new PAS protocol and the rTMS control, the MEP potentiation remained significantly higher at 60 min after the new PAS than after rTMS alone. At 60 min, the new protocol was also more effective than the two other PAS protocols. The new protocol caused strong involuntary twitches in three subjects and, therefore, its further characterization is needed before introducing it for clinical research. Additionally, its mechanism plausibly differs from PAS with high-frequency PNS that has been used in SCI patients.
  • Liu, Dongfei; Chen, Jian; Jiang, Tao; Li, Wei; Huang, Yao; Lu, Xiyi; Liu, Zehua; Zhang, Weixia; Zhou, Zheng; Ding, Qirui; Almeida Santos, Helder; Yin, Guoyong; Fan, Jin (2018)
    New treatment strategies for spinal cord injury with good therapeutic efficacy are actively pursued. Here, acetalated dextran (AcDX), a biodegradable polymer obtained by modifying vicinal diols of dextran, is demonstrated to protect the traumatically injured spinal cord. To facilitate its administration, AcDX is formulated into microspheres (approximate to 7.2 mu m in diameter) by the droplet microfluidic technique. Intrathecally injected AcDX microspheres effectively reduce the traumatic lesion volume and inflammatory response in the injured spinal cord, protect the spinal cord neurons from apoptosis, and ultimately, recover the locomotor function of injured rats. The neuroprotective feature of AcDX microspheres is achieved by sequestering glutamate and calcium ions in cerebrospinal fluid. The scavenging of glutamate and calcium ion reduces the influx of calcium ions into neurons and inhibits the formation of reactive oxygen species. Consequently, AcDX microspheres attenuate the expression of proapoptotic proteins, Calpain, and Bax, and enhance the expression of antiapoptotic protein Bcl-2. Overall, AcDX microspheres protect traumatically injured spinal cord by alleviating the glutamate-induced excitotoxicity. This study opens an exciting perspective toward the application of neuroprotective AcDX for the treatment of severe neurological diseases.
  • Rodionov, Andrei; Savolainen, Sarianna; Kirveskari, Erika; Mäkelä, Jyrki P.; Shulga, Anastasia (2020)
    Recovery of lower-limb function after spinal cord injury (SCI) is dependent on the extent of remaining neural transmission in the corticospinal pathway. The aim of this proof-of-concept pilot study was to explore the effects of long-term paired associative stimulation (PAS) on leg muscle strength and walking in people with SCI. Five individuals with traumatic incomplete chronic tetraplegia (>34 months post-injury, motor incomplete, 3 females, mean age 60 years) with no contraindications to transcranial magnetic stimulation (TMS) received PAS to one or both legs for 2 months (28 sessions in total, 5 times a week for the first 2 weeks and 3 times a week thereafter). The participants were evaluated with the Manual Muscle Test (MMT), AIS motor and sensory examination, Modified Asworth Scale (MAS), and the Spinal Cord Independence Measure (SCIM) prior to the intervention, after 1 and 2 months of PAS, and after a 1-month follow-up. The study was registered at (NCT03459885). During the intervention, MMT scores and AIS motor scores increased significantly (p = 0.014 and p = 0.033, respectively). Improvements were stable in follow-up. AIS sensory scores, MAS, and SCIM were not modified significantly. MMT score prior to intervention was a good predictor of changes in walking speed (Radj2 = 0.962). The results of this proof-of-concept pilot study justify a larger trial on the effect of long-term PAS on leg muscle strength and walking in people with chronic incomplete SCI.
  • Shulga, A.; Savolainen, S.; Kirveskari, E.; Mäkelä, J.P. (2020)
    Introduction: Paired associative stimulation (PAS) is a combination of transcranial magnetic stimulation (TMS) and peripheral nerve stimulation (PNS) and induces plastic changes in the human corticospinal tract. We have previously shown that PAS consisting of TMS pulses given at 100% of stimulator output and high-frequency PNS is beneficial for motor rehabilitation of patients with a chronic incomplete spinal cord injury (SCI). The therapeutic possibilities of this PAS variant for walking rehabilitation of paraplegic patients are unexplored. Case presentation: A 47-year old man with traumatic incomplete paraplegia (AIS D, neurological level T7) received PAS to his left leg for 3 months at 12 months post injury (PAS1) and for an additional 3 months at 24 months post injury (PAS2). The right leg had normal AIS scores and was not stimulated. Before PAS, the patient was nonambulatory, could not stand without weight support, and was consequently not eligible for conventional walking rehabilitation. After PAS1, the patient could stand for 1.5 min and take 13 steps (24 steps in follow up) on parallel bars without weight support and was enrolled into conventional walking rehabilitation. He achieved independent walking ability with a rollator. During PAS2, walking distance increased 2.4 times faster than during the preceding year. The left leg AIS score and spinal cord independence measure mobility subscore increased. No adverse effects were detected. Discussion: This is the first report of PAS with a high-frequency peripheral component that enabled and promoted walking rehabilitation. Together with previous reports on this technique, this result encourages further research into its therapeutic potential and mechanism. © 2020, The Author(s).
  • Tallqvist, Nina; Anttila, Heidi; Kallinen, Mauri; Koskinen, Eerika; Hämäläinen, Harri; Kauppila, Anna-Maija; Täckman, Anni; Vainionpää, Aki; Arokoski, Jari; Hiekkala, Sinikka (2019)
    Background and purpose: The purpose of the Finnish Spinal Cord Injury Study (FinSCI) is to identify factors related to the health and functioning of people with spinal cord injury, their challenges with accessibility, and how such factors are interconnected. The International Classification of Functioning, Disability and Health (ICF) is used as a structured framework in the study. Design: Protocol of mixed methods study. Results: Study participants were recruited from all 3 spinal cord injury outpatient clinics in Finland. The final target group consists of 1,789 subjects with spinal cord injury. The final questionnaire was formed from 5 different patient-reported instruments. The spinal cord injury-specified instruments are the Spinal Cord Injury Secondary Condition Scale, the Spinal Cord Independence Measure, and the Nottwil Environmental Factors Inventory Short Form. In addition, questions from the following generic instruments were chosen after a selection process: the Patient-Reported Outcomes Measurement Information System, PROM'S (R), and the National Study of Health, Well-being and Service, FinSote. Altogether, the final questionnaire covers 64 ICF categories and consists of 151 ICF-linked questions. Conclusion: The formulated questionnaire covers widely different aspects of health, functioning and accessibility. The questionnaire results and subsequent interviews will help in developing care and rehabilitation policies and services for people with spinal cord injury.
  • Kulesskaya, Natalia; Molotkov, Dmitry; Sliepen, Sonny; Mugantseva, Ekaterina; Garcia Horsman, Arturo; Paveliev, Mikhail; Rauvala, Heikki (2021)
    Heparin-binding growth-associated molecule (pleiotrophin) is a neurite outgrowth-promoting secretory protein that lines developing fiber tracts in juvenile CNS (central nervous system). Previously, we have shown that heparin-binding growth-associated molecule (HB-GAM) reverses the CSPG (chondroitin sulfate proteoglycan) inhibition on neurite outgrowth in the culture medium of primary CNS neurons and enhances axon growth through the injured spinal cord in mice demonstrated by two-photon imaging. In this study, we have started studies on the possible role of HB-GAM in enhancing functional recovery after incomplete spinal cord injury (SCI) using cervical lateral hemisection and hemicontusion mouse models. In vivo imaging of blood-oxygen-level-dependent (BOLD) signals associated with functional activity in the somatosensory cortex was used to assess the sensory functions during vibrotactile hind paw stimulation. The signal displays an exaggerated response in animals with lateral hemisection that recovers to the level seen in the sham-operated mice by injection of HB-GAM to the trauma site. The effect of HB-GAM treatment on sensory-motor functions was assessed by performance in demanding behavioral tests requiring integration of afferent and efferent signaling with central coordination. Administration of HB-GAM either by direct injection into the trauma site or by intrathecal injection improves the climbing abilities in animals with cervical hemisection and in addition enhances the grip strength in animals with lateral hemicontusion without affecting the spontaneous locomotor activity. Recovery of sensory signaling in the sensorimotor cortex by HB-GAM to the level of sham-operated mice may contribute to the improvement of skilled locomotion requiring integration of spatiotemporal signals in the somatosensory cortex.
  • Tolmacheva, Aleksandra; Savolainen, Sarianna; Kirveskari, Erika; Lioumis, Pantelis; Kuusela, Linda; Brandstack, Nina; Ylinen, Aarne; Mäkelä, Jyrki P.; Shulga, Anastasia (2017)
    A large proportion of spinal cord injuries (SCI) are incomplete. Even in clinically complete injuries, silent non-functional connections can be present. Therapeutic approaches that can strengthen transmission in weak neural connections to improve motor performance are needed. Our aim was to determine whether long-term delivery of paired associative stimulation (PAS, a combination of transcranial magnetic stimulation [TMS] with peripheral nerve stimulation [PNS]) can enhance motor output in the hands of patients with chronic traumatic tetraplegia, and to compare this technique with long-term PNS. Five patients (4 males; age 38-68, mean 48) with no contraindications to TMS received 4 weeks (16 sessions) of stimulation. PAS was given to one hand and PNS combined with sham TMS to the other hand. Patients were blinded to the treatment. Hands were selected randomly. The patients were evaluated by a physiotherapist blinded to the treatment. The follow-up period was 1 month. Patients were evaluated with Daniels and Worthingham's Muscle Testing (0-5 scale) before the first stimulation session, after the last stimulation session, and 1 month after the last stimulation session. One month after the last stimulation session, the improvement in the PAS-treated hand was 1.02 +/- 0.17 points (p <0.0001, n = 100 muscles from 5 patients). The improvement was significantly higher in PAS-treated than in PNS-treated hands (176 +/- 29%, p = 0.046, n = 5 patients). Longterm PAS might be an effective tool for improving motor performance in incomplete chronic SCI patients. Further studies on PAS in larger patient cohorts, with longer stimulation duration and at earlier stages after the injury, are warranted.