Browsing by Subject "stable isotopes"

Sort by: Order: Results:

Now showing items 1-7 of 7
  • Björnson, E.; Packard, C. J.; Adiels, M.; Andersson, L.; Matikainen, N.; Söderlund, S.; Kahri, J.; Hakkarainen, A.; Lundbom, N.; Lundbom, J.; Sihlbom, C.; Thorsell, A.; Zhou, H.; Taskinen, M. -R.; Boren, J. (2020)
    Background Renewed interest in triglyceride-rich lipoproteins as causative agents in cardiovascular disease mandates further exploration of the integrated metabolism of chylomicrons and very low-density lipoproteins (VLDL). Methods Novel tracer techniques and an integrated multi-compartmental model were used to determine the kinetics of apoB48- and apoB100-containing particles in the chylomicron and VLDL density intervals in 15 subjects with a wide range of plasma triglyceride levels. Results Following a fat-rich meal, apoB48 appeared in the chylomicron, VLDL1 and VLDL2 fractions in all subjects. Chylomicrons cleared rapidly from the circulation but apoB48-containing VLDL accumulated, and over the day were 3-fold higher in those with high versus low plasma triglyceride. ApoB48-containing particles were secreted directly into both the chylomicron and VLDL fractions at rates that were similar across the plasma triglyceride range studied. During fat absorption, whilst most triglyceride entered the circulation in chylomicrons, the majority of apoB48 particles were secreted into the VLDL density range. Conclusion The intestine secretes apoB48-containing particles not only as chylomicrons but also directly into the VLDL1 and VLDL2 density ranges both in the basal state and during dietary lipid absorption. Over the day, apoB48-containing particles appear to comprise about 20-25% of circulating VLDL and, especially in those with elevated triglycerides, form part of a slowly cleared 'remnant' particle population, thereby potentially increasing CHD risk. These findings provide a metabolic understanding of the potential consequences for increased CHD risk when slowed lipolysis leads to the accumulation of remnants, especially in individuals with hypertriglyceridemia.
  • Sahlstedt, Elina; Karhu, Juha A.; Pitkänen, Petteri; Whitehouse, Martin (2016)
  • Milardi, Marco; Lappalainen, Jyrki; McGowan, Suzanne; Weckström, Jan (2017)
    The additional input and enhanced cycling of nutrients derived from introduced fish can be a significant factor altering nutrient dynamics in oligotrophic lakes. To test this, we used a bioenergetic model to estimate the fish-derived nutrient load in Lake Kuutsjurvi, a historically fishless boreal lake of northern Fennoscandia. The lake was selected because of the absence of other anthropogenic stressors, a known stocking history and the possibility of quantitatively estimating the size-structure and biomass of the fish population through a mass removal. Subsequently, we used a mass balance model to compare fish-derived nutrients with other nutrient load pathways. For comparison over longer timescales, we used lake sediment records of diatoms, chlorophyll and carotenoid pigments, C: N ratios and stable isotopes to infer whether fish introduction produced detectable changes in the lake trophic state, primary productivity and terrestrial nutrient input. Based on the nutrient mass balance model, we found that phosphorus and nitrogen derived from fish were 0.46% and 2.2%, respectively, of the total load to the lake, suggesting that fish introduction could not markedly increase the nutrient load. Accordingly, the palaeolimnological record indicated little increase in primary production but instead a shift from pelagic to benthic production after fish introduction.
  • Kivilä, E. Henriikka; Luoto, Tomi P.; Rantala, Marttiina V.; Kiljunen, Mikko; Rautio, Milla; Nevalainen, Liisa (2019)
    Climate warming and consequent greening of subarctic landscapes increase the availability of organic carbon to the detrital food webs in aquatic ecosystems. This may cause important shifts in ecosystem functioning through the functional feeding patterns of benthic organisms that rely differently on climatically altered carbon resources. Twenty-five subarctic lakes in Finnish Lapland across a tree line ecotone were analysed for limnological and optical variables, carbon (delta C-13) and nitrogen (delta N-15) stable isotope (SI) composition of surface sediment organic matter (OM) and fossil Chironomidae (Diptera) remains to examine environmental controls behind chironomid functional feeding group (FFG) structure and their isotopic associations for assessing ecosystem functioning and carbon utilisation. We hypothesise that the chironomid SI signatures reflect increased allochthony with increasing allochthonous input, but the resource use may be altered by the functional characteristics of the assemblage. Multivariate analyses indicated that carbon geochemistry in the sediments (delta C-13, delta N-15, C/N), nutrients, indices of productivity (chlorophyll-a) and lake water optical properties, related to increasing presence of OM, played a key role in defining the chironomid FFG composition and isotopic signatures. Response modelling was used to examine how individual FFGs respond to environmental gradients. They showed divergent responses for OM quantity, dissolved organic carbon and nutrients between feeding strategies, suggesting that detritivores and filter feeders prefer contrasting carbon and nutrient conditions, and may thus hold paleoecological indicator potential to identify changes between different carbon fluxes. Benthic production was the primary carbon source for the chironomid assemblages according to a three-source SI mixing model, whereas pelagic and terrestrial components contributed less. Between-lake variability in source utilisation was high and controlled primarily by allochthonous OM inputs. Combination of biogeochemical modelling and functional classification is useful to widen our understanding of subarctic lake ecosystem functions and responses to climate-driven changes in limnology and catchment characteristics for long-term environmental change assessments and functional paleoecology.
  • Adiels, Martin; Mardinoglu, Adil; Taskinen, Marja-Riitta; Boren, Jan (2015)
    To develop novel strategies for prevention and treatment of dyslipidemia, it is essential to understand the pathophysiology of dyslipoproteinemia in humans. Lipoprotein metabolism is a complex system in which abnormal concentrations of various lipoprotein particles can result from alterations in their rates of production, conversion, and/or catabolism. Traditional methods that measure plasma lipoprotein concentrations only provide static estimates of lipoprotein metabolism and hence limited mechanistic information. By contrast, the use of tracers labeled with stable isotopes and mathematical modeling, provides us with a powerful tool for probing lipid and lipoprotein kinetics in vivo and furthering our understanding of the pathogenesis of dyslipoproteinemia.
  • Kainz, M. J.; Hager, H.H.; Rasconi, S.; Kahilainen, K. K.; Amundsen, P. -A.; Hayden, B. (2017)
    Trophic transfer and retention of dietary compounds are vital for somatic development, reproduction, and survival of aquatic consumers. In this field study, stable carbon and nitrogen isotopes, and fatty acids (FA) contents in invertebrates and fishes of pre-alpine Lake Lunz, Austria, were used to (1) identify the resource use and trophic level of Arctic charr (Salvelinus alpinus), pike (Esox lucius), perch (Perca fluviatilis), brown trout (Salmo trutta), roach (Rutilus rutilus), and minnow (Phoxinus phoxinus) and (2) examine how polyunsaturated fatty acids (PUFA; i.e., omega-3 and -6 PUFA) are related to total lipid status, littoral-pelagic reliance, and trophic position. Stable isotope data suggest that pike, perch, and minnow derived most of their energy from littoral resources, but minnows differed from pike and perch in their trophic position and PUFA composition. The co-occurrence of cyprinids, percids, and pike segregated these fishes into more lipid-rich (roach, minnow) and lipid-poor (pike, percids) species. Although the relatively lipid-poor pike and percids occupied a higher trophic position than cyprinids, there was a concurrent, total lipid-dependent decline in omega-3 and -6 PUFA in these predatory fishes. Results of this lake food-web study demonstrated that total lipids in fish community, littoral-pelagic reliance, and trophic position explained omega-3 and -6 PUFA in dorsal muscle tissues. Omega-3 and -6 PUFA in these fishes decreased with increasing trophic position, demonstrating that these essential FAs did not biomagnify with increasing trophic level. Finally, this lake food-web study provides evidence of fish community-level relationship between total lipid status and PUFA or stable isotope ratios, whereas the strength of such relationships was less strong at the species level.
  • Adiels, Martin; Taskinen, Marja-Riitta; Björnson, Elias; Andersson, Linda; Matikainen, Niina; Söderlund, Sanni; Kahri, Juhani; Hakkarainen, Antti; Lundbom, Nina; Sihlbom, Carina; Thorsell, Annika; Zhou, Haihong; Pietiläinen, Kirsi H.; Packard, Chris; Boren, Jan (2019)
    Aims To investigate how apolipoprotein C-III (apoC-III) metabolism is altered in subjects with type 2 diabetes, whether the perturbed plasma triglyceride concentrations in this condition are determined primarily by the secretion rate or the removal rate of apoC-III, and whether improvement of glycaemic control using the glucagon-like peptide-1 analogue liraglutide for 16 weeks modifies apoC-III dynamics. Materials and Methods Postprandial apoC-III kinetics were assessed after a bolus injection of [5,5,5-H-2(3)]leucine using ultrasensitive mass spectrometry techniques. We compared apoC-III kinetics in two situations: in subjects with type 2 diabetes before and after liraglutide therapy, and in type 2 diabetic subjects with matched body mass index (BMI) non-diabetic subjects. Liver fat content, subcutaneous abdominal and intra-abdominal fat were determined using proton magnetic resonance spectroscopy. Results Improved glycaemic control by liraglutide therapy for 16 weeks significantly reduced apoC-III secretion rate (561 +/- 198 vs. 652 +/- 196 mg/d, P = 0.03) and apoC-III levels (10.0 +/- 3.8 vs. 11.7 +/- 4.3 mg/dL, P = 0.035) in subjects with type 2 diabetes. Change in apoC-III secretion rate was significantly associated with the improvement in indices of glucose control (r = 0.67; P = 0.009) and change in triglyceride area under the curve (r = 0.59; P = 0.025). In line with this, the apoC-III secretion rate was higher in subjects with type 2 diabetes compared with BMI-matched non-diabetic subjects (676 +/- 208 vs. 505 +/- 174 mg/d, P = 0.042). Conclusions The results reveal that the secretion rate of apoC-III is associated with elevation of triglyceride-rich lipoproteins in subjects with type 2 diabetes, potentially through the influence of glucose homeostasis on the production of apoC-III.