Browsing by Subject "subarktinen"

Sort by: Order: Results:

Now showing items 1-6 of 6
  • Svahnbäck, Katja (Helsingin yliopisto, 2020)
    Tutkielman tarkoituksena oli selvittää ja verrata keskenään kahden luontaisesti kalattoman järven eläinplanktonyhteisöjen rakennetta sekä kalaistutusten vaikutuksia siihen. Tarkoituksena oli myös selvittää äyriäiseläinplanktonin vasteita saalistukseen erilaisen predaatiopaineen vallitessa. Luontaisesti kalattomissa järvissä eliöyhteisö on muovautunut hyvin erilaiseksi visuaalisesti saalistavien kalojen puuttuessa. Näissä järvissä pääpredaattorina toimivat usein selkärangattomat pedot, joiden saalistustekniikka eroaa selvästi kalojen saalistuksesta, ja ne ovat usein kokorajoitteisia ravinnon käytön suhteen. Kalojen visuaalinen saalistus kohdistuu kooltaan suurimpiin ja näkyvimpiin äyriäiseläinplanktoneihin ja ne voivat näin tehokkaasti vaikuttaa eläinplanktonin kokorakenteeseen. Luontaisesti kalattomiin järviin tehdyillä kalaistutuksilla voi olla merkittäviä vaikutuksia koko järven eliöyhteisöön. Oletuksena oli, että äyriäiseläinplankton olisi kooltaan suurempaa kalattomassa järvessä verrattuna istutettuun järveen. Oletimme pienikokoisen Bosmina spp. -vesikirpun suojautuvan selkärangattomien petojen predaatiota vastaan erilaisten korostuneiden morfologisten piirteiden avulla. Myös äyriäiseläinplanktonin vertikaalisen sijainnin oletettiin eroavan järvien välillä. Kuutsjärvi ja Tippakuru sijaitsevat Värriön luonnonpuiston alueella Itä-Lapissa. Molemmat tutkimusjärvet ovat luontaisesti kalattomia latvajärviä, mutta Kuutsjärveen on istutettu taimenta 1980-luvulla ja se muodosti järveen pysyvän taimenkannan. Eläinplanktonnäytteet otettiin limnos -putkinäytteenottimella järven syvimmästä kohdasta koko vesipatsaan syvyydeltä metrin välein kesällä 2010, kolmena eri näytteenottokertana. Näytteet mikroskopoitiin ja niistä määritettiin lajit/suvut mahdollisimman tarkasti ja äyriäiseläinplanktonin koko mitattiin. Näytteistä määritettiin eläinplanktonin tiheydet, äyriäiseläinplanktonin biomassat, keskikoot ja kokojakaumat. Lisäksi mitattiin pienikokoisen Bosmina spp. -vesikirpun ulokkeiden (mucro, antennula) pituudet predaatiopaineen vaikutusten arvioimiseksi. Äyriäiseläinplanktonin vertikaalinen sijainti vesipatsaassa määritettiin. Selvimmin pelagiaalin eläinplanktonyhteisöt erosivat toisistaan kokonaistiheyksien osalta, minkä aiheutti rataseläinten voimakas lisääntyminen kalattomassa Tippakurussa kesän aikana. Eläinplanktonlajisto oli järvissä kuitenkin hyvin samanlainen ja lajirunsaus vain hieman suurempi kalattomassa Tippakurussa. Äyriäiseläinplanktonin biomassat vaihtelivat kuukausien välillä, mutta eivät eronneet merkittävästi järvien välillä. Molemmissa järvissä hallitsevina äyriäiseläinplanktoneina esiintyivät hankajalkaiset ja vesikirppuja esiintyi selkeästi vähemmän. Äyriäiseläinplanktonin keskikoot erosivat joiltain osin järvien välillä ja olivat pääosin suuremmat kalattomassa Tippakurussa. Kalattomille järville tyypillistä hyvin suurikokoista eläinplanktonia ei Tippakurussa kuitenkaan esiintynyt ja erot jäivät tästä syystä oletettua pienemmiksi. Pienikokoisen Bosmina spp. -vesikirpun mucrojen pituuksissa havaittiin kuitenkin selkeä ero. Mucrot olivat kooltaan selvästi suuremmat kalattomassa Tippakurussa koko kesän ajan ja tätä ollaankin pidetty yhtenä luotettavimpana Bosmina spp. -vesikirppujen vasteena selkärangattomien petojen saalistukseen. Äyriäiseläinplanktonin sijainnissa havaittiin eroja lähinnä hankajalkaisten ja vesikirppujen välillä, mutta järvien välillä erot olivat vähäisiä, joitain yksittäisiä tapauksia lukuun ottamatta. Erilaisesta predaatiopaineesta huolimatta järvien eläinplanktonlajisto erosi vain vähän järvien välillä ja erot olivat joiltain osin jopa päinvastaisia oletettuun nähden. Kuutsjärven eläinplanktonlajisto muistutti monelta osin muiden istutettujen järvien lajistoa, koostuen lähinnä pienikokoisesta äyriäiseläinplanktonista ja rataseläimistä. Järvessä esiintyvä taimen ei ole tehokas planktivori, joten se on todennäköisesti vaikuttanut Kuutsjärven eläinplanktonlajistoon lähinnä trofiatasojen välisten vuorovaikutusten kautta, hävittämällä selkärangattomat pedot pelagiaalista. Tippakurussa sen sijaan havaittiin kalattomille järville poikkeuksellisen runsaasti rataseläimiä ja äyriäiseläinplankton oli kooltaan verrattaen pientä. Myös äyriäiseläinplanktonin sijainti oli monilta osin poikkeava muihin tutkimuksiin nähden. Tippakurun pelagiaalissa, poikkeuksellisesti myös päiväsaikaan esiintyneet selkärangattomat pedot G.lacustris ja C. flavicans ovat tehokkaalla, myös suuriin eläinplanktereihin kohdistuneella predaatiollaan todennäköisesti muovanneet Tippakurun eläinplanktonyhteisöstä ja sen vasteista hyvin omaleimaisen sekä poikkeavan muihin kalattomiin järviin nähden. Voimakkaammasta selkärangattomien petojen predaatiosta Tippakurussa kuitenkin kertovat Bosmina spp. -vesikirpun suuremmat mucrot verrattuna Kuutsjärveen, jossa istutettu taimen on hävittänyt selkärangattomat pedot pelagiaalista.
  • Rutanen, Aino (Helsingin yliopisto, 2020)
    Global warming caused by the warming effect of greenhouse gases (GHGs) induces permafrost thaw, which could alter Arctic ecosystems from prominent carbon sinks to potential sources of GHG emissions when polar microorganisms become metabolically more active and have access to carbon compounds that were previously largely unavailable. Polar microbes can have significant contributions to the growing emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) and therefore, studies on their metabolism are important. The aim of my study was to investigate polar microbial community composition and diversity as well as functional potential that was related to GHG-cycling in a subarctic environment with genome-resolved metagenomics. Soil cores were collected at the Rásttigáisá fell that is located in Northern Norway. After DNA extraction, ten mineral soil samples were sequenced. Metagenome-assembled genomes (MAGs) were reconstructed using either the combination of human-guided binning and automatic binning or human-guided binning only. Taxonomy was assigned to the MAGs and the functional potential of the MAGs was determined. I recovered dozens of good-quality MAGs. Notably, the MAGs from the mostly unknown phyla Dormibacterota (formerly candidate phylum AD3) and Eremiobacterota (formerly candidate phylum WPS-2) were reconstructed. There were MAGs from the following bacterial phyla as well: Acidobacteriota, Actinobacteriota, Chloroflexota, Gemmatimonadota, Proteobacteria and Verrucomicrobiota. In addition to the bacterial MAGs, MAGs from the group of ammonia-oxidizing archaea were recovered. Most of the MAGs belonged to poorly studied phylogenetic groups and consequently, novel functional potential was discovered in many groups of microorganisms. The following metabolic pathways were observed: CO2 fixation via the Calvin cycle and possibly via a modified version of 3-hydroxypropionate/4-hydroxybutyrate cycle; carbon monoxide oxidation to CO2; CH4 oxidation and subsequent carbon assimilation via serine pathway; urea, ammonia and nitrite oxidation; incomplete denitrification as well as dissimilatory nitrate reduction to ammonium. My study demonstrates how genome-resolved metagenomics provides a valuable overview of the microbial community and its functional potential.
  • Kärppä, Mai (Helsingin yliopisto, 2020)
    Arctic peatlands are globally extensive and long-lasting storages of carbon and are therefore important ecosystems controlling global carbon cycling. Changes in climate affect peatlands’ ability to accumulate carbon through changes in hydrology and water table level, vegetation, soil temperature and permafrost thaw. As climate warming is projected mostly to northern and arctic regions, it may change the peatlands’ capacity to sequester and release carbon as carbon dioxide and methane. In this Master’s Thesis I studied how the past climate changes are reflected in carbon accumulation rates over the past millennia. Known climate anomalies, such as the Medieval Climate Anomaly, Little Ice Age and the last rapid warming starting from 1980, and their impact on average long-term apparent rate of carbon accumulation were studied from the peat proxies. 15 peat cores were collected from northern subarctic Swedish Lapland and from North-East European Russia. Cores were collected from the active peat layer above permafrost that is known to be sensitive to climate warming. Cores were dated with radiocarbon (14C) and lead (210Pb) methods and peat properties and accumulation patterns were calculated for one centimeter thick subsamples based on chronologies. The Little Ice Age and the last rapid warming affected the carbon accumulation rate considerably whereas for Medieval Climate Anomaly period the peat records did not show very distinctive response. During the Little Ice Age the carbon accumulation rates were low (median 10,5 g m-2v-1) but during the post-Little Ice Age and especially during the last warm decades after 1980 carbon accumulation rates have been high (median 48,5 g m-2v-1). Medieval Climate Anomaly had only a minor positive effect on accumulation rates. On average, the long-term apparent rate of carbon accumulation during the past millennia was 43,3 g m-2v-1 which is distinctly higher than the previously studied rate of 22,9 g m-2v-1 for northern peatlands (p-value 0,0003). Based on results it can be concluded that warm climate periods accelerated the carbon accumulation rate whereas during cold periods accumulation decelerated. Warm climate prolongs the growth period and accelerates the decomposition of peat; cold climate shortens the period of plant growth and thickens the permafrost layer in peatlands, respectively. However, peat layers that are formed after the Little Ice Age are incompletely decomposed which amplifies the carbon accumulation rate partly. Nevertheless, permafrost thawing has been shown to increase accumulation rates, as well. Studying past carbon accumulation rates helps to understand the peatland and carbon cycling dynamics better. Even though accumulation rates reveal a lot about carbon sequestration capabilities of peat, it does not indicate whether a peatland has been a carbon sink or a source.
  • Lotsari, Eliisa; Dietze, Michael; Kämäri, Maria; Alho, Petteri; Kasvi, Elina (MDPI, 2020)
    Water 12 7 (2020)
    Macro-turbulent flows (i.e., coherent flow structures reaching through the whole water column), have not been studied widely in northern seasonally frozen rivers during both open-channel and ice-covered flow conditions. Thus, we aim: (1) to detect and compare the macro-turbulent flow, both at open-channel and ice-covered flow conditions; (2) to explore spatial variation of macro-turbulent flow characteristics within a meander bend; and (3) to detect the effects of near-bed layer velocity fluctuation on bedload transport during differing overall flow conditions. The analyses are based on 5–10 min-long acoustic Doppler current profiler (ADCP) measurements from a subarctic river. The ice-covered low flow, and open-channel higher and lower flow conditions were measured over the period of 2016 to 2020. This study found that macro-turbulent flow existed at all measurement locations under both open-channel and ice-covered flow conditions. Macro-turbulent flow was most consistent and obvious in the streamwise velocity component, and in particular at the inlet and outlet of the investigated meander bend. During all seasons, the near-bed velocities consistently exceeded the sufficient amount for sediment transport. At inlet and outlet areas, the greatest near-bed velocity fluctuation across the critical threshold for sediment transport coincided with the measurement times having frequent macro-turbulent flow.
  • Salovaara, Petri (Helsingin yliopisto, 2020)
    Metaani (CH4) on voimakas kasvihuonekaasu. Luonnontilaiset suot ovat yksi suurimmista metaanin lähteistä. Metaania syntyy suon hapettomassa kerroksessa metonogeenisten arkkien hajottaessa orgaanista ainesta. Metaani vapautuu ilmakehään diffuntoitumalla, kuplimalla tai kulkeutumalla kasvien aerenkymaattisten solukoiden kautta. Kasveista erityisesti sarojen läpi voi kulkeutua runsaasti metaania ilmakehään. Minerotrofisten saravaltaisten soiden metaanipäästöjen on havaittu, muista soista poiketen, kasvavan siirryttäessä pohjoisemmille leveysasteille. Tähän on esitetty yhdeksi syyksi maankäyttöä, jossa poronhoidolla on suuri merkitys. Pohjois-Suomessa poroja elää noin 200 000 yksilöä. Suot ovat poroille tärkeä elinympäristö erityisesti kesäaikaan, sillä rehevillä sarasoilla on niille riittävästi ravintoa ja avosuot tuovat puolestaan suojaa verta imeviltä hyönteisiltä. Porojen laidunnuksen vaikutusta soiden kasvihuonekaasutaseisiin on kuitenkin tutkittu varsin vähän. Vaikutuksen voidaan nähdä tulevan ainakin kahta kautta: toisaalta porot syövät suokasveja ja vaikuttavat tätä kautta hiilenkiertoon sekä toisaalta ulostavat papanoita ja tallovat niitä suohon muuttaen mahdollisesti näin turpeen mikrobikoostumusta. Tämän pro gradu -työn tavoitteena oli selvittää, miten porolaidunnus vaikuttaa soiden metaanipäästöihin ja lisäävätkö poron papanat suon metaanivuota joko jäädessään suon pinnalle tai tallautuessaan pinnan alapuolisiin kerroksiin. Työn aineisto kerättiin touko-elokuussa Halssiaavalta ja Lompolojänkkältä. Laidunnuksen vaikutuksia tutkittiin laidunnetuilla ja laiduntamattomilla koealoilla. Koealojen alakäsittelyinä toimivat metaaninmittauspisteiden erilaiset papanakäsittelyt. Halssiaavalla osalla alakäsittelyistä käytettiin eri tasoina suon pinnanmuotojen (välipinta / jänne) vaihtelua. Mittauspisteitä perustettiin yhteensä 45 kappaletta kolmen toiston sarjoina. Mittauspisteiltä mitattiin metaanin lisäksi myös vedenpinnan taso, turpeen lämpötila sekä määritettiin putkilokasvien lehtiala. Laidunnuksella ei havaittu olevan tilastollisesti merkitsevää vaikutusta metaanivoihin kummallakaan koealueella. Myöskään pinnalle laitettujen papanoiden ei havaittu vaikuttavan metaanivuohon. Tallonta pienensi metaanivuota Halssiaavan laiduntamattomalla koealalla. Tallonta nosti metaanivuon lyhyeksi hetkeksi erittäin suureksi, mutta kokonaisuudessaan tallonnan jälkeen vuot hieman pienenivät pidemmällä tarkastelujaksolla. Tässä tutkimuksessa laidunnus ei näyttänyt lisäävän soiden metaanipäästöjä. Tutkituilla soilla laidunnus ei näkynyt lehtialoissa ja koska papanalisäykselläkään ei havaittu olevan vaikutusta metaanintuotantoon, on loogista, että metaanipäästöt eivät eronneet laiduntamattomien ja laidunnettujen koealojen välillä. Suon pinnalle jäävät papanat eivät myöskään lisänneet metaanivuota. Mahdollinen papanoiden lannoitusvaikutus voi jäädä lyhyessä ajassa näkymättä. Toisaalta pinnalle jäävät papanat voivat muodostaa kasveille fyysisen esteen. Tällöin kasvien pienentynyt hiiliyhdisteiden syöte maaperään voi vähentää metaanipäästöjä, vaikka papanoilla olisikin lannoittava vaikutus. Tallontakäsittelyssä metaanivoiden puolestaan havaittiin pienenevän lehtialan pienentyessä. Tallonta turmelee kasveja, jolloin pienentynyt hiiliyhdisteiden syöte maaperään voi selittää metaanipäästöjen pienentymistä. Papanoiden mukana suolle voi tulla myös lisää mikrobeja. On kuitenkin mahdollista, että pötsin mikrobit eivät selviydy toimintakykyisinä, minkä vuoksi päästöt eivät lisääntyneet. Tutkimuksessa havaittiin, että porojen laidunnuksella ei näyttäisi olevan merkittävää vaikutusta pohjoisten soiden metaanipäästöihin. Myöskään poron papanat eivät sellaisenaan merkitsevästi lisänneet päästöjä, ainakaan lyhyellä aikavälillä. Tallontakäsittelyssä havaittiin, että päästöt voivat jopa pienentyä. On mahdollista, että vaikka papanoita tulee soille jatkuvasti lisää, eivät soiden metaanipäästöt kuitenkaan kasva.
  • Kamppuri, Elli-Noora (Helsingin yliopisto, 2021)
    Suot ovat maapallolla sekä merkittäviä hiilivarastoja että suurimpia luontaisia metaanin lähteitä. Metaani on toiseksi merkittävin kasvihuonekaasu hiilidioksidin jälkeen ja voimakkuudeltaan moninkertainen hiilidioksidiin nähden. Koska suot tuottavat paljon metaania, on tärkeä selvittää, mitkä tekijät vaikuttavat soiden metaanintuotantoon ja sen suuruuteen. Subarktisen ilmastovyöhyk-keen minerotrofisten sarasoiden on todettu tuottavan suhteessa enemmän metaanipäästöjä verrattuna muiden ilmastovyöhykkei-den vastaaviin soihin, vaikka yleensä korkeampien leveyspiirien suot tuottavat vähemmän metaania matalampien leveyspiirien soihin nähden. Porojen laidunnuksen on pohdittu vaikuttavan subarktisten minerotrofisten sarasoiden suuriin metaanipäästöihin. Minerotrofiset sarasuot ovat tärkeitä laidunnusalueita poroille pohjoisessa Fennoskandiassa erityisesti kesäaikaan. Laiduntavat herbovorit muokkaavat ekosysteemiään monilla tavoilla sekä suoraan että epäsuorasti. Laidunnuksen on todettu eri arktisilla ja subarktisilla ekosysteemeillä suosivan muun muassa sarakasvien kasvua ja lisäävän maaperän mikrobistoa ja sen aktiivisuutta ulosteiden ravinnelisäyksen ansiosta. Lisäksi porot märehtijöinä voivat muokata metaanintuotantoa suoekosysteemissä, jos pöt-sin metanogeenisiä mikrobeja kulkeutuu papanoiden mukana suohon. Tässä pro gradu -tutkielmassa selvitetään, miten poron papanoiden lisääminen suolle vaikuttaa suon metaanipäästöihin ja kasvilli-suuteen. Työssä halutaan selvittää, millaisia vaikutuksia papanalisäyksellä on suon kasvien kasvuun, kasvilajisuhteisiin ja niiden kautta metaanipäästöihin. Uskotaan, että poron papanat lisäävät suolla sarakasvien runsautta, jotka kuljettavat solukoissaan metaania ja näin lisäävät suon metaanipäästöjä. Papanoiden aiheuttaman ravinnelisäyksen epäillään muuttavan kasvilajisuhteita siten, että enemmän ravinteita vaativat lajit lisääntyvät. Papanalisäyksen uskotaan lisäävän suon metaanipäästöjä myös aktivoi-malla suon metanogeenisten mikrobien toimintaa. Papanalisäyksen vaikutus kasvillisuuteen ja metaanipäästöihin oli hyvin vähäi-nen ensimmäisen kasvukauden aikana (Salovaara 2020). Tässä pro gradu -työssä seurataan papanalisäyksen vaikutusta pidem-mällä aikavälillä, sillä muutokset kasvillisuudessa voivat olla hitaita ja vaikutukset metaanipäästöihin kehittyä vasta myöhemmässä vaiheessa. Lisäksi tutkimuksessa selvitetään, miten pelkkä turve ilman kasvillisuuden vaikutusta reagoi papanalisäykseen maasto-olosuhteissa. Aineiston keruu tähän tutkielmaan tapahtui 1.6.-31.8.2020 Pohjois-Suomessa. Tutkimuskohteina oli kaksi minerotrofista sarasuota Lapissa. Ensimmäinen suo oli Lomponlonjänkkä Pallasjärvellä Muoniossa ja toinen Halssiaapa Sodankylässä. Lompolonjänkällä oli 27 mittauspistettä ja Halssiaavalla 18. Mittauspisteiltä mitattiin 1-2 viikon välein metaanipäästöt, lehtiala, pohjavedenpinta ja turpeen lämpötila. Lompolonjänkän mittauspisteistä kuusi oli sellaista, joista kaikki pintakasvillisuus poistettiin, jotta papanali-säyksen vaikutusta turpeessa voisi seurata. Lisäksi suolla tehtiin inkubointikoe, jonka tarkoituksena oli selvittää, miten poron papanat hajoavat turpeessa. Tulosten perusteella poron papanat lisäsivät metaanivuota Halssiaavan jänteillä ja välipinnoilla, kun ne lisäämisen jälkeen survottiin suohon. Lompolonjänkällä metaanivuo oli pienempi mittauspisteillä, joille oli lisätty papanoita. Uusilla kasvittomilla ja kasvillisilla mittauspisteillä ei havaittu muutoksia metaanivuossa. Kasvillisuuden lehtialassa ei huomattu vaihtelua laidunnuksen tai papanali-säyksen takia Lompolonjänkällä. Halssiaavan jänteillä laidunnus ja papanalisäykset näyttivät pienentävän lehtialaa. Myös välipin-noilla laidunnus pienensi lehtialaa. Uppolisäyspisteillä lehtiala pieneni, mutta biomassa antoi tästä päinvastaisen tuloksen. Papa-noiden hajoaminen turpeessa oli nopeampaa lähempänä pintaa. Kolmen kuukauden aikana pintapapanoiden kuivamassa pieneni puoleen ja pohjapapanoiden kahteen kolmannekseen. Papanoiden vaikutus metaanivuohon näyttäisi ilmenevän vasta seuraavana kasvukautena. Lompolonjänkällä papanoiden ravinneli-säys paransi ruohojen kasvuolosuhteita, mikä runsastutti niiden määrää suhteessa saroihin. Tämä vaikutti metaanivuohon laske-vasti. Halssiaavan välipinnalla ruohoja ei esiintynyt mittauspisteillä lainkaan, minkä takia papanalisäys näytti vaikuttavan positiivi-sesti saramaisten kasvien kasvuun uppolisäysaloilla ja näin ollen kohotti metaanivuota. Jänteillä pintalisäyspisteiden lehtiala oli kontrollia pienempi, mutta metaanivuo selkeästi suurempi. Jännepinnoilla lehtiala ei näyttäisi korreloivan samalla tavalla metaa-nivuon kanssa kuin välipinnoilla.