Browsing by Subject "surface plasmon resonance"

Sort by: Order: Results:

Now showing items 1-6 of 6
  • Kainulainen, Saila (Helsingin yliopisto, 2020)
    The solubility of a poorly water-soluble drug can be improved by converting the crystalline drug into an amorphous form. However, the amorphous form is metastable due to the higher energy state and recrystallization may occur during storage and dissolution. The amorphous form can be stabilized by forming an amorphous solid dispersion (ASD), where the drug molecules are dispersed to the solid medium, e.g. hydrophilic polymer. One preparation method for amorphous solid dispersions is spray drying, where a solution containing a drug and polymer is converted into small droplets in a drying chamber, in which the solvent evaporates in a hot gas stream and solid particles are formed. The aim of this study was to investigate whether an ASD of a poorly water-soluble drug can be prepared by spray drying using 20:80 (V/V) ethanol-water mixture as a solvent in a feed solution. Indomethacin (γ-polymorph) was used as a model drug and polyvinylpyrrolidone vinyl acetate (PVPVA) as a polymer. The aim was to find a suitable formulation where the drug is in the amorphous form after spray drying and remains in the amorphous form during storage. The ratios of the drug to polymer in the spray-dried formulations were 1:4, 1:6, 1:8, 1:10, 1:12 and 1:16. The study also examined whether a change in one process parameter, pump feed rate, affects the amorphous nature and stability of the resulting spray-dried solid dispersions. Two different pump feed rates, a higher 30% and a lower 15%, were used in the study. X-ray powder diffraction (XRPD) was used to characterize the solid-state of the spray-dried formulations. XRPD measurements were performed immediately after spray drying and on selected time points during storage. Formulations 1:10 at 30% feed rate, 1:12 at both feed rates and 1:16 at 30% feed rate were amorphous after spray drying. In 1:12 (30%) and 1:16 (30%) formulations indomethacin remained in amorphous form over the study periods (22 and 56 days, respectively). In other formulations, indomethacin was found to be in crystalline α-form immediately after spray drying or recrystallization to the α-form occurred during storage. The interaction between indomethacin and PVPVA was studied by surface plasmon resonance spectroscopy (SPR). The aim of the SPR measurements was to understand the interaction between these substances in the feed solution used in spray drying. PVPVA solutions of various concentrations (1%, 0.5%, 0.1% and 0.01%) were injected to the surface of the gold sensor coated with crystalline γ-indomethacin, and the changes in the SPR signal responses were monitored during the interaction. The same measurements were also performed on a pure gold sensor without indomethacin. An interaction between indomethacin and PVPVA can be observed, and based on the measurements, a polymer layer with a thickness of about 1 nm was formed on the surface of the indomethacin sensor regardless of the concentration of the polymer solution. Thus, even a small amount of polymer in solution is sufficient to cover the indomethacin crystals. This may also occur in the feed solution during spray drying, but further studies with SPR are still needed, especially with amorphous indomethacin. This study showed that an ASD of indomethacin and PVPVA can be successfully prepared by spray drying using an aqueous feed solution. Spray-dried 1:12 and 1:16 formulations at a higher pump feed rate were found to be stable enough for further studies. If the spray-dried material is further formulated into a pharmaceutical product, indomethacin must remain in amorphous form throughout the shelf-life of the product to maintain the improved solubility.
  • Sassetti, Elisa; Cruz, Cristina Durante; Tammela, Päivi; Winterhalter, Mathias; Augustyns, Koen; Gribbon, Philip; Windshügel, Björn (2019)
    The serine protease Caseinolytic protease subunit P (ClpP) plays an important role for protein homeostasis in bacteria and contributes to various developmental processes, as well as virulence. Therefore, ClpP is considered as a potential drug target in Gram-positive and Gram-negative bacteria. In this study, we utilized a biochemical assay to screen several small molecule libraries of approved and investigational drugs for Escherichia coli ClpP inhibitors. The approved drugs bortezomib, cefmetazole, cisplatin, as well as the investigational drug cDPCP, and the protease inhibitor 3,4-dichloroisocoumarin (3,4-DIC) emerged as ClpP inhibitors with IC50 values ranging between 0.04 and 31 mu M. Compound profiling of the inhibitors revealed cefmetazole and cisplatin not to inhibit the serine protease bovine -chymotrypsin, and for cefmetazole no cytotoxicity against three human cell lines was detected. Surface plasmon resonance studies demonstrated all novel ClpP inhibitors to bind covalently to ClpP. Investigation of the potential binding mode for cefmetazole using molecular docking suggested a dual covalent binding to Ser97 and Thr168. While only the antibiotic cefmetazole demonstrated an intrinsic antibacterial effect, cDPCP clearly delayed the bacterial growth recovery time upon chemically induced nitric oxide stress in a ClpP-dependent manner.
  • Multia, Evgen (Helsingfors universitet, 2017)
    The literature part of this thesis reviewed the process of obtaining affinity information with quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) biosensors. Basic principles of these biosensors were also evaluated, along with the principles of data acquisition and finally the data processing. The raw data produced by QCM or SPR can be used to study biomolecular interactions qualitatively and quantitatively. These techniques are also powerful in obtaining kinetic and thermodynamic information of the biomolecular interactions. SPR and QCM can produce data easily, but data interpretation can be sometimes problematic. This is partly due to misconceptions on how the sensograms should be interpreted. Many of the interpretational problems can and should be avoided long before the modeling of the data takes place to obtain reliable affinity data. The literature part of this thesis also presents tools for developing good experimental design. Well-designed experimental set-up is the most important element for producing good biosensor data. One should also estimate from the sensogram shapes what kind of analysis is needed. This was explained in detail in the literature part, pointing out the key elements how sensograms with certain shape should be interpreted and further analyzed to obtain affinity constants. Data analysis part of the literature review provides also information how to use appropriate models (e.g. fitting equilibrium, kinetic or complex data) with extensive examples. Surface site distribution model will be also covered as the tool to analyze complex biomolecular interactions by QCM and SPR. In the experimental part, affinity of anti-human apoB-100 monoclonal antibody (anti-apoB-100 Mab) towards different lipoproteins was studied with partially filling affinity capillary (PF-ACE) electrophoresis and QCM. PF-ACE with adsorption energy distribution (AED) calculations provided information on the heterogeneity of the interactions. For the first time, a modified surface site distribution model called Interaction map was utilized to model QCM data of lipoprotein interactions with anti-apoB-100 Mab. With the Interaction maps, it was possible to distinguish different kinetics of low-density lipoprotein (LDL) and anti-apoB-100 Mab interactions. Affinity constants obtained were used to evaluate thermodynamics of these interactions. Both methods were also used to evaluate interactions with other apoB-100 containing lipoproteins: intermediate-density lipoprotein (IDL) and very lowdensity lipoprotein (VLDL). It was found that the Interaction maps could distinguish two different kinetics from the mixture of IDL-VLDL with distinct affinity constants. Both methods agreed well with the affinity constants. It was found that the anti-apoB-100 Mab used in this study, had a high affinity towards apoB-100 containing lipoproteins. In the second part of the experimental, a convective interaction media (CIM) based LDL isolation platform was developed. In these studies, anti-apoB-100 Mab was immobilized on the CIM-disk and was used to isolate LDL from human plasma and serum samples. It was found that apolipoprotein based separation of LDL from plasma was possible, although not without difficulties, since apoB-100 is not only present in LDL, but also in VLDL and IDL. To circumvent this problem different antibodies (anti-apoE and anti-apoAI) were utilized to capture VLDL and IDL from the plasma before the interaction of LDL with the anti-apoB-100 CIM-disk. LDL was successfully isolated with this approach in a significantly reduced time compared to conventional ultracentrifugation method used for LDL isolation.
  • Kari, Otto K. (Helsingfors universitet, 2018)
    Nanolääkkeiden pinnalle elimistössä muodostuva biomolekyylikerros eli proteiinikorona vaikuttaa muun muassa jakautumiseen, toksisuuteen ja soluvuorovaikutuksiin. Koronan ominaisuuksien tuntemus jakautumisen eri vaiheissa on siten edellytys tehokkaampien ja turvallisempien nanolääkkeiden kehittämiselle, mutta kehitystyötä on hidastanut soveltuvien menetelmien puute. Turvallisuuden ja tehon ennakoinnin osalta on korostettu leimavapaiden in vitro -menetelmien tarvetta. Tutkielmassa kehitettiin multiparametriseen pintaplasmoniresonanssilaitteistoon ja laskennalliseen mallinnukseen perustuva menetelmä liposomien koronan tiheyden ja paksuuden määrittämiseen. Toisin kuin koronan tutkimiseen yleisesti käytetyt menetelmät, valoon perustuva kajoamaton ja leimavapaa menetelmä ei vaikuta koronan rakenteeseen. Näin voidaan tutkia myös löyhemmin sitoutuneista proteiineista muodostunutta pintakerrosta, mikä vastaa keskeisimpään kirjallisuuskatsauksessa todettuun menetelmäpuutteeseen. Menetelmää sovellettiin neljän biosensorille immobilisoidun liposomiformulaation pinnalle ihmisen seerumissa muodostuvan koronan tutkimiseen. Sen avulla oli mahdollista määrittää ensimmäistä kertaa tiiviin ja löyhän koronan tiheys ja paksuus laimentamattomassa seerumissa. Tulokset tukevat käsitystä ns. erotteluhypoteesin kuvaamasta erillisestä löyhästä proteiinikerroksesta ja avaavat uusia mahdollisuuksia sen biologisen merkityksen arviointiin. Lisäksi voitiin määrittää ensi kerran opsoniinimolekyylien sitoutumiskinetiikka liposomien pinnalle, minkä avulla voidaan arvioida nanolääkkeiden taipumusta poistua verenkierrosta ja aktivoida sisäsyntyinen immuunipuolustus. Menetelmä soveltuu siten liposomien koostumuksen ja pinta-arkkitehtuurin optimointiin prekliinisessä lääkekehitysvaiheessa.
  • Espo, Erika (Helsingin yliopisto, 2021)
    Nowadays, targetability studies usually require sample modifications and quite often, examination requires the use of directed light in harmful wavelengths. The surface plasmon resonance (SPR) technique does not need either of those actions. With SPR technology, the targetability of biomolecules can be studied in real-time and without any additional labels. The SPR response is received by measuring the change in surface plasmon resonance conditions due to refractive index changes caused by material interactions in the vicinity of a metal sensor surface. In the present study, the targetability of neonatal Fc receptor (FcRn) was studied by SPR. FcRn-mediated targetability studies were performed against protein A and human colorectal adenocarcinoma (Caco-2) immobilized on SPR sensors. The aim of the study was to confirm the FcRn targetability with bare Fc-fragment and Fc-fragment modified nanoparticles (NPs) designed for oral drug delivery. The NPs consisted of a core porous silicon (PSi) particle, entrapped into a lignin capsule, and finally functionalized with the FcRn-targeting ligand. Results confirmed the binding efficacy of bare Fc-fragment with protein A at pH 6.5, which was the critical pH value for preserving the lignin capsule around the PSi NPs. The cell-based SPR response was significantly higher for FcRn-targeted NPs when compared with non-functionalized NPs. According to these results, FcRn-mediated transcytosis emerges with great potential for oral drug delivery via Fc-functionalized NPs.
  • Hallila, Susanna (Helsingfors universitet, 2013)
    There is a strong need for new in vitro methods in early drug development that predict in vivo conditions more reliably. One of the prerequisites for successful drug therapy is sufficient permeability. A drug needs to be transported through a cell membrane before it can have a pharmacological effect. Therefore, the drug-cell interactions are studied in the early stage of the drug development process. The literature review of this work covers the traditional in vitro and in silico methods of predicting the permeability of drugs across the intestinal membrane. The widely applied methods are reviewed briefly and the predictability of the methods is evaluated. Moreover, the surface plasmon resonance (SPR) technique is introduced. The principle of SPR and its applications for predicting intestinal permeability using lipid membranes resembling the intestinal membrane and for studying drug-cell interactions are discussed. The advantage of the SPR technique is that it is an optical method which allows real-time monitoring under a constant flow without labeling agents. The aim of the experimental part of this work was to evaluate the suitability of the SPR technique for cell-based studies to monitor drug-cell interactions in native cellular environments. Previously, the SPR technique has been almost merely used in routine biomolecular interaction analysis. Recently, the SPR technique has also been applied to cellbased assays but in those studies the reason for the SPR signal responses is generally poorly discussed. The objective of the experimental study was to evaluate and optimize different cell culturing approaches for living cell sensing for SPR, i.e. cells immobilized on the roof of the PDMS molded flow channel in the SPR instrument and cells immobilized directly on the SPR sensor surface. ARPE-19 cells were immobilized on the PDMS substrates but the challenge of imaging cell monolayers on PDMS molded SPR flow channels suggested that immobilizing the cells directly on the SPR sensor surface would be a more straightforward procedure. Hence, ARPE-19 and MDCKII cell culturing protocols were optimized for successful immobilization of confluent cell monolayers directly on the SPR sensor surface. However, ARPE-19 cells showed poor resistance against shear stress in the flow channel; whereas MDCKII cells showed much better resistance against shear stress in the flow channel. Therefore, only MDCKII cells immobilized on the SPR sensor surfaces were used for drug-cell interaction studies. After three days of culture MDCKII cells were exposed to test compounds in separate SPR measurements. The used test compounds were propranolol, D-mannitol, D-glucose and HSPC:Chol liposomes. During the SPR measurements, the changes in the SPR peak minimum angular position and SPR peak minimum intensity were recorded in real-time, and these were further used for analysis after the measurements. The results showed that clear differences in both SPR signals between propranolol and D-mannitol were observed when the cells were exposed to the test compounds. Propranolol diffuses effectively by the transcellular pathway into cells whereas D-mannitol uses the paracellular pathway. This indicates that the introduced SPR approach may be a potential in vitro method in order to provide real-time information on the permeability of drugs and possibly on cell uptake mechanisms of nanoparticles for a better mechanistic understanding of drug-cell interactions on a cellular level.