Browsing by Subject "tramadol"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Havia, Mari (Helsingfors universitet, 2013)
    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channel receptors which are widely distributed in human brain. nAChRs are often expressed pre-synaptically and they modulate the release of other neurotransmitters. nAChRs consist of five subunits: nine different subunits have been identified so far, forming multiple different nAChR subtypes with different pharmacological properties. nAChRs participate extensively in physiological functions and pathophysiological conditions. nAChRs mediate the effects of endogenous agonist, acetylcholine, as well as commonly used substance of abuse, nicotine. Addictive drugs such as nicotine and opioids cause adaptive changes in central nervous system. In addition to binding site of acetylcholine, various allosteric binding sites have been identified in nAChRs. Allosteric ligands are able to modulate the effect of agonist by binding to allosteric binding site. The aim of the experimental part of the pro gradu was to study in vitro interactions of nicotine and three different opioids, codeine, oxycodone and tramadol in SH-SY5Y cells. SH-SY5Y cells express endogenously α3* and α7-nAChRs. Binding assays were performed with radioactive ligand [3H]-epibatidine. Functional interactions of nicotine and the opioids were studied with 86Rb+- efflux assay. Codeine, oxycodone and tramadol exhibited receptor level interactions with nicotine in SH-SY5Y cells. Observed interactions were mediated by nAChRs. The opioids inhibited nAChR activation caused by nicotine without binding to the [3H]-epibatide binding site. Codeine, oxycodone and tramadol appear to affect as weak non-competitive antagonists of nAChRs. These results give further information of nicotine-opioid interactions at receptor level. There are indications that nicotine and opioids also have interactions in vivo, which may be partly explained with these receptor level interactions.
  • Meijer, Juri (Helsingfors universitet, 2012)
    Smoking is one of the major causes for premature deaths worldwide. Tobacco smoke contains nicotine, which activates the nicotinic acetylcholine receptors (nAChR) expressed by the human body. nAChRs are part of the cholinergic system and its endogenous neurotransmitter is acetylcholine. The nAChRs are excitatory and the often regulate the release of other neurotransmitters. Nicotine is one of the most addicting compounds known. The rewarding effects of nicotine are mediated through the activation of the mesolimbic dopamine pathway. The mesolimbic pathway is triggered also by the compounds activating the endogenous opioid system thus mediating the rewarding effects and opioid addiction. The nicotine - opioid interactions have been widely studied. It is observed that majority of opioid abusers and patients receiving opioid replacement therapy are smokers. It has been also detected that nicotine releases endogenous opioid peptides in vivo in the brain regions mediating both addiction and analgesia. In addition, the rewarding effect of nicotine attenuates in opioid receptor knock-out rodents. Furthermore, it has been observed that nicotine's rewarding effects can be reduced with opioid receptor antagonists. In order to prevent smoking's negative effects the use opioid antagonists for smoking cessation has been clinically researched with poor results. Many of the opioids in clinical use have diverse and direct interaction with the nAChRs in vitro. E.g. it has been observed that methadone and morphine have an effect on the function of the nAChRs. This may explain partially the smoking behaviour of replacement therapy patients. Opioids are prescribed mainly for the treatment of moderate to intense pain. Nicotine is too found to be analgesic in vivo but in humans its analgesic effect has been questionable. In the experimental part of thesis binding and functional interactions with human's α4β2-nAChR expressed by SH-EP1-hα4β2 cell line was researched with clinically commonly used opioids codeine, oxycodone and tramadol. Competitive binding was studied using [3H]-epibatidine binding assay and the functional effects were studied using 86Rb+-efflux assay. The results suggest that oxycodone and tramadol act as weak competitive antagonists of α4β2-nAChR in vitro in concentrations that are clinically irrelevant. According to the results, however, codeine acts as positive allosteric modulator of α4β2-nAChR potentiating the effects of nicotine in micromolar concentrations. The effect is similar to galantamine, used in treatment of Alzheimer's disease. The clinical relevance of codeine's potentiating nicotine's effect on the function of α4β2-nAChR cannot be estimated according to the results from these studies. Therefore, in order to confirm the results experiments with codeine need to be done in vivo using e.g. α4- and β2-knock-out mice in order to clarify α4β2-nAChR's role in the analgesic and rewarding effects of codeine. However, the results from the experimental part provide valuable information on the interactions of nicotine and opioids. Results from studies conducted with α4β2-nAChRs have not been published enough to determine the importance of the phenomenon in i.a. drug addiction and analgesia.
  • Lehtola, Minna (Helsingfors universitet, 2018)
    Tramadol products for cats are not commercially available. Problems may occur when dividing a tablet registered for humans due to uneven distribution of active ingredient within a tablet and bitter taste of tramadol. Minitablets have multiple benefits, including small size, better uniformity of content, coatability and fast administration, in comparison to a divided conventional tablet. The purpose of this study was to develop minitablets which are possible to coat with a taste masking coating. Physical and chemical properties of tramadol hydrochloride, such as water solubility, temperature behavior and hygroscopicity were studied. Additionally, compatibility of tramadol hydrochloride with excipients was studied by a 3-month stability exam. The pre-tests of granulation were carried out by using lactose or ascorbic acid as an active ingredient to model tramadol hydrochloride. The granulation was performed with high shear granulator and tableting with a rotary tablet press. The only variable factor between the granulation batches was the amount of granulation fluid. The impact of the amount of granulation fluid to the tableting properties was examined by determining particle size distribution, Carr index and Hausner ratio. Uniformity of mass, uniformity of content, hardness, disintegration time and dissolution were examined. The study revealed that tramadol hydrochloride did not have incompatibilities with the examined excipients. Tramadol hydrochloride was not hygroscopic even though it was found out to be freely soluble in water. Tablets with adequate hardness were successfully compressed of both granulated masses and the direct compression mass. However, the direct compression mass had more undesirable properties regarding the processes. Most batches fulfilled the requirements set for uniformity of mass and uniformity of content. Although the purpose of this study was to develop a tablet for veterinary medicine, the results in this study may be utilized in developing a formulation for pediatric medicine.