Browsing by Subject "tree growth"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Luoma, Ville; Saarinen, Ninni; Kankare, Ville; Tanhuanpaa, Topi; Kaartinen, Harri; Kukko, Antero; Holopainen, Markus; Hyyppa, Juha; Vastaranta, Mikko (2019)
    Exact knowledge over tree growth is valuable information for decision makers when considering the purposes of sustainable forest management and planning or optimizing the use of timber, for example. Terrestrial laser scanning (TLS) can be used for measuring tree and forest attributes in very high detail. The study aims at characterizing changes in individual tree attributes (e.g., stem volume growth and taper) during a nine year-long study period in boreal forest conditions. TLS-based three-dimensional (3D) point cloud data were used for identifying and quantifying these changes. The results showed that observing changes in stem volume was possible from TLS point cloud data collected at two different time points. The average volume growth of sample trees was 0.226 m(3) during the study period, and the mean relative change in stem volume was 65.0%. In addition, the results of a pairwise Student's t-test gave strong support (p-value 0.0001) that the used method was able to detect tree growth within the nine-year period between 2008-2017. The findings of this study allow the further development of enhanced methods for TLS-based single tree and forest growth modeling and estimation, which can thus improve the accuracy of forest inventories and offer better tools for future decision-making processes.
  • Luoma, Ville; Yrttimaa, Tuomas; Kankare, Ville; Saarinen, Ninni; Pyorala, Jiri; Kukko, Antero; Kaartinen, Harri; Hyyppa, Juha; Holopainen, Markus; Vastaranta, Mikko (2021)
    Tree growth is a multidimensional process that is affected by several factors. There is a continuous demand for improved information on tree growth and the ecological traits controlling it. This study aims at providing new approaches to improve ecological understanding of tree growth by the means of terrestrial laser scanning (TLS). Changes in tree stem form and stem volume allocation were investigated during a five-year monitoring period. In total, a selection of attributes from 736 trees from 37 sample plots representing different forest structures were extracted from taper curves derived from two-date TLS point clouds. The results of this study showed the capability of point cloud-based methods in detecting changes in the stem form and volume allocation. In addition, the results showed a significant difference between different forest structures in how relative stem volume and logwood volume increased during the monitoring period. Along with contributing to providing more accurate information for monitoring purposes in general, the findings of this study showed the ability and many possibilities of point cloud-based method to characterize changes in living organisms in particular, which further promote the feasibility of using point clouds as an observation method also in ecological studies.
  • Yrttimaa, Tuomas; Luoma, Ville; Saarinen, Ninni; Kankare, Ville; Junttila, Samuli; Holopainen, Markus; Hyyppä, Juha; Vastaranta, Mikko (2020)
    Terrestrial laser scanning (TLS) has been adopted as a feasible technique to digitize trees and forest stands, providing accurate information on tree and forest structural attributes. However, there is limited understanding on how a variety of forest structural changes can be quantified using TLS in boreal forest conditions. In this study, we assessed the accuracy and feasibility of TLS inquantifying changes in the structure of boreal forests. We collected TLS data and field reference from 37 sample plots in 2014 (T1) and 2019 (T2). Tree stems typically have planar, vertical, and cylindricalcharacteristics in a point cloud, and thus we applied surface normal filtering, point cloud clustering, and RANSAC-cylinder filtering to identify these geometries and to characterize trees and foreststands at both time points. The results strengthened the existing knowledge that TLS has the capacity to characterize trees and forest stands in space and showed that TLS could characterize structural changes in time in boreal forest conditions. Root-mean-square-errors (RMSEs) in the estimates for changes in the tree attributes were 0.99–1.22 cm for diameter at breast height (∆dbh), 44.14–55.49 cm2 for basal area (∆g), and 1.91–4.85 m for tree height (∆h). In general, tree attributes were estimated more accurately for Scots pine trees, followed by Norway spruce and broadleaved trees. At the forest stand level, an RMSE of 0.60–1.13 cm was recorded for changes in basal area-weighted meandiameter (∆Dg), 0.81–2.26 m for changes in basal area-weighted mean height (∆Hg), 1.40–2.34 m2 /ha for changes in mean basal area (∆G), and 74–193 n/ha for changes in the number of trees per hectare (∆TPH). The plot-level accuracy was higher in Scots pine-dominated sample plots than in Norway spruce-dominated and mixed-species sample plots. TLS-derived tree and forest structural attributes at time points T1 and T2 differed significantly from each other (p < 0.05). If there was an increase or decrease in dbh, g, h, height of the crown base, crown ratio, Dg, Hg, or G recorded in the field, a similar outcome was achieved by using TLS. Our results provided new information on the feasibility of TLS for the purposes of forest ecosystem growth monitoring.