Browsing by Subject "types and species"

Sort by: Order: Results:

Now showing items 1-20 of 20
  • Ärje, Johanna; Melvad, Claus; Jeppesen, Mads Rosenhoj; Madsen, Sigurd Agerskov; Raitoharju, Jenni; Rasmussen, Maria Strandgård; Iosifidis, Alexandros; Tirronen, Ville; Gabbouj, Moncef; Meissner, Kristian; Hoye, Toke Thomas (British Ecological Society, 2020)
    Methods in Ecology and Evolution 11 8 (2020)
    1. Understanding how biological communities respond to environmental changes is a key challenge in ecology and ecosystem management. The apparent decline of insect populations necessitates more biomonitoring but the time-consuming sorting and expert-based identification of taxa pose strong limitations on how many insect samples can be processed. In turn, this affects the scale of efforts to map and monitor invertebrate diversity altogether. Given recent advances in computer vision, we propose to enhance the standard human expert-based identification approach involving manual sorting and identification with an automatic image-based technology. 2. We describe a robot-enabled image-based identification machine, which can automate the process of invertebrate sample sorting, specimen identification and biomass estimation. We use the imaging device to generate a comprehensive image database of terrestrial arthropod species which is then used to test classification accuracy, that is, how well the species identity of a specimen can be predicted from images taken by the machine. We also test sensitivity of the classification accuracy to the camera settings (aperture and exposure time) to move forward with the best possible image quality. We use state-of-the-art Resnet-50 and InceptionV3 convolutional neural networks for the classification task. 3. The results for the initial dataset are very promising as we achieved an average classification accuracy of 0.980. While classification accuracy is high for most species, it is lower for species represented by less than 50 specimens. We found significant positive relationships between mean area of specimens derived from images and their dry weight for three species of Diptera. 4. The system is general and can easily be used for other groups of invertebrates as well. As such, our results pave the way for generating more data on spatial and temporal variation in invertebrate abundance, diversity and biomass.
  • García-Girón, Jorge; Heino, Jani; García-Criado, Francisco; Fernández-Aláez, Camino; Alahuhta, Janne (Wiley Online Library, 2020)
    Ecography 43 8 (2020)
    Biotic interactions are fundamental drivers governing biodiversity locally, yet their effects on geographical variation in community composition (i.e. incidence-based) and community structure (i.e. abundance-based) at regional scales remain controversial. Ecologists have only recently started to integrate different types of biotic interactions into community assembly in a spatial context, a theme that merits further empirical quantification. Here, we applied partial correlation networks to infer the strength of spatial dependencies between pairs of organismal groups and mapped the imprints of biotic interactions on the assembly of pond metacommunities. To do this, we used a comprehensive empirical dataset from Mediterranean landscapes and adopted the perspective that community assembly is best represented as a network of interacting organismal groups. Our results revealed that the co-variation among the beta diversities of multiple organismal groups is primarily driven by biotic interactions and, to a lesser extent, by the abiotic environment. These results suggest that ignoring biotic interactions may undermine our understanding of assembly mechanisms in spatially extensive areas and decrease the accuracy and performance of predictive models. We further found strong spatial dependencies in our analyses which can be interpreted as functional relationships among several pairs of organismal groups (e.g. macrophytes–macroinvertebrates, fish–zooplankton). Perhaps more importantly, our results support the notion that biotic interactions make crucial contributions to the species sorting paradigm of metacommunity theory and raise the question of whether these biologically-driven signals have been equally underappreciated in other aquatic and terrestrial ecosystems. Although more research is still required to empirically capture the importance of biotic interactions across ecosystems and at different spatial resolutions and extents, our findings may allow decision makers to better foresee the main consequences of human-driven impacts on inland waters, particularly those associated with the addition or removal of key species.
  • Gonzalez-Moreno, Pablo; Lazzaro, Lorenzo; Vila, Montserrat; Preda, Cristina; Adriaens, Tim; Bacher, Sven; Brundu, Giuseppe; Copp, Gordon H.; Essl, Franz; García-Berthou, Emili; Katsanevakis, Stelios; Loennechen Moen, Toril; Lucy, Frances E.; Nentwig, Wolfgang; Roy, Helen E.; Srėbalienė, Greta; Talgø, Venche; Vanderhoeven, Sonia; Andjelković, Ana; Arbačiauskas, Kęstutis; Auger-Rozenberg, Marie-Anne; Bae, Mi-Jung; Bariche, Michel; Boets, Pieter; Boieiro, Mário; Borges, Paulo Alexandre; Canning-Clode, João; Cardigos, Federico; Chartosia, Niki; Cottier-Cook, Elizabeth Joanne; Crocetta, Fabio; D'hondt, Bram; Foggi, Bruno; Follak, Swen; Gallardo, Belinda; Gammelmo, Øivind; Giakoumi, Sylvaine; Giuliani, Claudia; Fried, Guillaume; Jelaska, Lucija Šerić; Jeschke, Jonathan M.; Jover, Miquel; Juárez-Escario, Alejandro; Kalogirou, Stefanos; Kočić, Aleksandra; Kytinou, Eleni; Laverty, Ciaran; Lozano, Vanessa; Maceda-Veiga, Alberto; Marchante, Elizabete; Marchante, Hélia; Martinou, Angeliki F.; Meyer, Sandro; Minchin, Dan; Montero-Castaño, Ana; Morais, Maria Cristina; Morales-Rodriguez, Carmen; Muhthassim, Naida; Nagy, Zoltán Á.; Ogris, Nikica; Onen, Huseyin; Pergl, Jan; Puntila, Riikka; Rabitsch, Wolfgang; Ramburn, Triya Tessa; Rego, Carla; Reichenbach, Fabian; Romeralo, Carmen; Saul, Wolf-Christian; Schrader, Gritta; Sheehan, Rory; Simonović, Predrag; Skolka, Marius; Soares, António Onofre; Sundheim, Leif; Tarkan, Ali Serhan; Tomov, Rumen; Tricarico, Elena; Tsiamis, Konstantinos; Uludağ, Ahmet; Valkenburg, Johan van; Verreycken, Hugo; Vettraino, Anna Maria; Vilar, Lluís; Wiig, Øystein; Witzell, Johanna; Zanetta, Andrea; Kenis, Marc (Pensoft, 2019)
    NeoBiota 44: 1-25
    Standardized tools are needed to identify and prioritize the most harmful non-native species (NNS). A plethora of assessment protocols have been developed to evaluate the current and potential impacts of non-native species, but consistency among them has received limited attention. To estimate the consistency across impact assessment protocols, 89 specialists in biological invasions used 11 protocols to screen 57 NNS (2614 assessments). We tested if the consistency in the impact scoring across assessors, quantified as the coefficient of variation (CV), was dependent on the characteristics of the protocol, the taxonomic group and the expertise of the assessor. Mean CV across assessors was 40%, with a maximum of 223%. CV was lower for protocols with a low number of score levels, which demanded high levels of expertise, and when the assessors had greater expertise on the assessed species. The similarity among protocols with respect to the final scores was higher when the protocols considered the same impact types. We conclude that all protocols led to considerable inconsistency among assessors. In order to improve consistency, we highlight the importance of selecting assessors with high expertise, providing clear guidelines and adequate training but also deriving final decisions collaboratively by consensus.
  • Virkkala, Raimo; Leikola, Niko; Kujala, Heini; Kivinen, Sonja; Hurskainen, Pekka; Kuusela, Saija; Valkama, Jari; Heikkinen, Risto K. (Wiley, 2022)
    Ecological Applications
    The use of indicator species in forest conservation and management planning can facilitate enhanced preservation of biodiversity from the negative effects of forestry and other uses of land. However, this requires detailed and spatially comprehensive knowledge of the habitat preferences and distributions of selected focal indicator species. Unfortunately, due to limited resources for field surveys, only a small proportion of the occurrences of focal species is usually known. This shortcoming can be circumvented by using modeling techniques to predict the spatial distribution of suitable sites for the target species. Airborne laser scanning (ALS) and other remote sensing (RS) techniques have the potential to provide useful environmental data covering systematically large areas for these purposes. Here, we focused on six bird of prey and woodpecker species known to be good indicators of boreal forest biodiversity values. We used known nest sites of the six indicator species based on nestling ringing records. Thus, the most suitable nesting sites of these species provide important information for biodiversity-friendly forest management and conservation planning. We developed fine-grained, that is, 96 × 96 m grid cell resolution, predictive maps across the whole of Finland of the suitable nesting habitats based on ALS and other RS data and spatial information on the distribution of important forest stands for the six studied biodiversity indicator bird species based on nesting-habitat suitability modeling, that is, the MaxEnt model. Habitat preferences of the study species, as determined by MaxEnt, were in line with the previous knowledge of species-habitat relations. The proportion of suitable habitats of these species in protected areas (PAs) was considerable, but our analysis also revealed many potentially high-quality forest stands outside PAs. However, many of these sites are increasingly threatened by logging because of increased pressures for using forests for bioeconomy and forest industry based on National Forest Strategy. Predicting habitat suitability based on information on the nest sites of indicator species provides a new tool for systematic conservation planning over large areas in boreal forests in Europe, and a corresponding approach would also be feasible and recommendable elsewhere where similar data are available.
  • Li, Zhengfei; Wang, Jun; Liu, Zhenyuan; Meng, Xingliang; Heino, Jani; Jiang, Xuankong; Xiong, Xiong; Jiang, Xiaoming; Xie, Zhicai (2019)
    Science of the Total Environment 655:1288-1300
    Examining the relative contribution of local environmental stressors and regional factors in structuring biological communities is essential for biodiversity conservation and environmental assessment, yet their relative roles for different community characterizations remain elusive. Here, we examined the responses of taxonomic and functional structures of stream macroinvertebrate communities to local and regional factors across a human-induced environmental gradient in the Han River Basin, one subtropical biodiversity hotspot in China. Our objectives were: 1) to examine the responses of traditional taxonomic measures and functional traits to anthropogenic disturbances; 2) to compare the relative importance of environmental versus spatial variables and catchment-scale versus reach-scale variables for the two community characterizations. We found that both species and trait compositions performed well in differentiating anthropogenic disturbances, indicating that both taxonomic and functional structures of macroinvertebrate communities were strongly altered by human activities. Particularly, some traits related to life history (e.g., voltinism), resilience and resistance (e.g., adult flying ability) are well suited for predicting changes of communities towards anthropogenic disturbances owing to their mechanistic relationship with environmental gradients. We found that environmental variables played more important roles than spatial effects in structuring both taxonomic and functional facets of macroinvertebrate communities. Environmental filtering was more important in determining functional than taxonomic structure, and the opposite was true for spatial effects. In terms of environmental variables, catchment land-uses played the primary role in determining taxonomic composition, whereas reach-scale variables related to local habitat heterogeneity were more influential for functional structure. Our study highlights the importance of employing metacommunity perspectives and different community characterizations in both theoretical and applied research. For stream bioassessment and management, we argue that the combination of taxonomic and functional characterizations of community should be implemented, as different facets of biological communities responded to different types of anthropogenic disturbances.
  • Li, Zhengfei; Wang, Jun; Meng, Xingliang; Heino, Jani; Sun, Meiqin; Jiang, Xiaoming; Xie, Zhicai (2019)
    Freshwater Science 38 (1): 170-182
    Disentangling the effects of dispersal mode on the environmental and spatial processes structuring biological assemblages is essential to understanding the mechanisms of species coexistence and maintenance. Here, we use field investigations to link dispersal mode with environmental and spatial processes that control stream macroinvertebrate assemblage structure across the Yarlung Zangbo Grand Canyon of Tibet (Tibetan Plateau). We sampled macroinvertebrates in streams that occur in 4 distinct regions. Each of these regions has a steep elevational gradient but different altitude ranges, climate types, and water replenishment sources. We classified macroinvertebrate taxa into passive and active dispersal mode groups to test whether macroinvertebrates with different dispersal modes responded differently to environmental and spatial processes. Our results showed that the assemblage structure of active dispersal groups was more strongly determined by environmental variables (habitat filtering/species sorting) than spatial factors both within and across regions. In contrast, the structure of passive dispersers was more strongly associated with spatial factors than environmental filtering in the entire study area and within lower canyon regions. However, spatial effects were not important for either type of dispersal group in the upper canyon regions, especially in the region with glacier-fed streams, indicating the predominance of species sorting processes in these harsh environments. Furthermore, the spatial structuring of assemblages became stronger as habitat filtering declined, which indicates a reduction in species sorting processes in less harsh environments. Our findings demonstrate diverse responses of macroinvertebrate assemblages to environmental and spatial processes across this poorly-known highland river system, and imply that dispersal mode influences the underlying mechanisms of community variation.
  • Tolonen, Kimmo T.; Karjalainen, Juha; Hämäläinen, Heikki; Nyholm, Kristiina; Rahkola-Sorsa, Minna; Cai, Yongjiu; Heino, Jani (Springer Link, 2020)
    Aquatic Ecology 54 3 (2020)
    Lake littoral environments are heterogeneous, and different organisms typically show specific responses to this environmental variation. We examined local environmental and spatial factors affecting lake littoral biodiversity and the structuring of assemblages of phytoplankton, zooplankton and macroinvertebrates within and among three basins of a large lake system. We explored congruence of species composition and species richness among the studied organism groups to evaluate their general indicator potential to represent spatial variation in other groups. We expected that effects of water chemistry on plankton assemblages were stronger than effects of habitat characteristics. In contrast, we anticipated stronger effects of habitat on macroinvertebrates due to their mainly benthic mode of life. We also expected that within-basin spatial effects would be strongest on macroinvertebrates and weakest on phytoplankton. We predicted weak congruence in assemblage composition and species richness among the organism groups. Phytoplankton assemblages were mainly structured by the shared effects of water chemistry and large-scale spatial factors. In contrast to our expectations, habitat effects were stronger than water chemistry effects on zooplankton assemblages. However, as expected, macroinvertebrate species composition and richness were mainly affected by habitat conditions. Among-group congruence was weak for assemblage composition and insignificant for richness. Albeit weak, congruence was strongest between phytoplankton and zooplankton assemblages, as we expected. In summary, our analyses do not support the idea of using a single organism group as a wholesale biodiversity indicator.
  • Hill, Matthew J.; Heino, Jani; White, James C.; Ryves, David B.; Wood, Paul J. (2019)
    Biological Conservation 237: 348-357
    Understanding the spatial patterns and environmental drivers of freshwater diversity and community structure is a key challenge in biogeography and conservation biology. However, previous studies have focussed primarily on taxonomic diversity and have largely ignored the phylogenetic and functional facets resulting in an incomplete understanding of the community assembly. Here, we examine the influence of local environmental, hydrological proximity effects, land-use type and spatial structuring on taxonomic, functional and phylogenetic (using taxonomic relatedness as a proxy) alpha and beta diversity (including the turnover and nestedness-resultant components) of pond macroinvertebrate communities. Ninety-five ponds across urban and non-urban land-uses in Leicestershire, UK were examined. Functional and phylogenetic alpha diversity were negatively correlated with species richness. At the alpha scale, functional diversity and taxonomic richness were primarily determined by local environmental factors while phylogenetic alpha diversity was driven by spatial factors. Compositional variation (beta diversity) of the different facets and components of functional and phylogenetic diversity were largely determined by local environmental variables. Pond surface area, dry phase length and macrophyte cover were consistently important predictors of the different facets and components of alpha and beta diversity. Our results suggest that pond management activities aimed at improving biodiversity should focus on improving and/or restoring local environmental conditions. Quantifying alpha and beta diversity of the different biodiversity facets facilitates a more accurate assessment of patterns in diversity and community structure. Integrating taxonomic, phylogenetic and functional diversity into conservation strategies will increase their efficiency and effectiveness, and maximise biodiversity protection in human-modified landscapes.
  • Wang, Huan; García Molinos, Jorge; Heino, Jani; Zhang, Huan; Zhang, Peiyu; Xu, Jun (Pergamon, 2021)
    Environment International 153 (2021), 106494
    Eutrophication is a major problem currently impacting many surface water ecosystems. Impacts of increased nutrient concentrations on biodiversity may differ between different scales, different organism groups, and different trophic states. Surveys at different spatial scales have suggested that biodiversity of different taxa may exhibit significant cross-taxon congruence. In our study, we examined the diversity of zooplankton and zoobenthos across 261 lakes in the Lake Taihu watershed, an area that is undergoing a severe eutrophication process. We tested the cross-taxon congruence in species richness and Shannon-Wiener diversity between zooplankton and zoobenthos along a nutrient gradient across the lakes. Our findings were consistent with the intermediate disturbance hypothesis, considering nutrient input as the disturbance. Also, we found significant cross-taxon congruence between zooplankton and zoobenthos diversities. Our results confirmed that excess nutrient levels resulted in diversity loss and community simplification. Zoobenthos were more sensitive to nutrient increases compared with zooplankton, which decreased cross-taxon congruence because these organism groups did not respond similarly to the anthropogenic disturbance.
  • Fourcade, Yoan; WallisDeVries, Michiel F.; Kuussaari, Mikko; Swaay, Chris A. M.; Heliölä, Janne; Öckinger, Erik (John Wiley & Sons Ltd, 2021)
    Ecology Letters 24: 5, 950-957
    Habitat fragmentation may present a major impediment to species range shifts caused by climate change, but how it affects local community dynamics in a changing climate has so far not been adequately investigated empirically. Using long-term monitoring data of butterfly assemblages, we tested the effects of the amount and distribution of semi-natural habitat (SNH), moderated by species traits, on climate-driven species turnover. We found that spatially dispersed SNH favoured the colonisation of warm-adapted and mobile species. In contrast, extinction risk of cold-adapted species increased in dispersed (as opposed to aggregated) habitats and when the amount of SNH was low. Strengthening habitat networks by maintaining or creating stepping-stone patches could thus allow warm-adapted species to expand their range, while increasing the area of natural habitat and its spatial cohesion may be important to aid the local persistence of species threatened by a warming climate.
  • García‐Girón, Jorge; Lindholm, Marja; Heino, Jani; Toivonen, Heikki; Alahuhta, Janne (Wiley, 2022)
    Limnology and Oceanography
    Community ecology has had a strong focus on single snapshots of species compositional variation in time. However, environmental change often occurs slowly at relatively broad spatio-temporal scales, which requires historically explicit assessments of long-term metacommunity dynamics, such as the order of species arrival during community assembly (i.e., priority effects), a theme that merits further empirical quantification. In this study, we applied the Bayesian inference scheme of Hierarchical Modeling of Species Communities together with information on functional traits and evolutionary dependencies to efficiently explore the question of how ecological communities are organized in space and time. To do this, we used a comprehensive time-series dataset from boreal lake plants and adopted the perspective that more sound conclusions on metacommunity dynamics can be gained from studies that consider a historically integrative approach over long timeframes. Our findings revealed that historical contingency via priority effects can profoundly shape community assembly under the influence of environmental change across decades (here, from the 1940s to the 2010s). Similarly, our results supported the existence of both positive and negative species-to-species associations in lake plants, suggesting that functional divergence can switch the inhibition–facilitation balance at the metacommunity level. Perhaps more importantly, this proof-of-concept study supports the notion that community ecology should include a historical perspective and suggests that ignoring priority effects may risk our ability to identify the true magnitude of change in present-day biotic communities.
  • Melero, Yolanda; Evans, Luke C.; Kuussaari, Mikko; Schmucki, Reto; Stefanescu, Constantí; Roy, David B.; Oliver, Tom H. (Springer Science and Business Media LLC, 2022)
    Communications Biology
    Climatic anomalies are increasing in intensity and frequency due to rapid rates of global change, leading to increased extinction risk for many species. The impacts of anomalies are likely to vary between species due to different degrees of sensitivity and extents of local adaptation. Here, we used long-term butterfly monitoring data of 143 species across six European bioclimatic regions to show how species’ population dynamics have responded to local or globally-calculated climatic anomalies, and how species attributes mediate these responses. Contrary to expectations, degree of apparent local adaptation, estimated from the relative population sensitivity to local versus global anomalies, showed no associations with species mobility or reproductive rate but did contain a strong phylogenetic signal. The existence of phylogenetically-patterned local adaptation to climate has important implications for forecasting species responses to current and future climatic conditions and for developing appropriate conservation practices.
  • Heino, Jani; Alahuhta, Janne; Fattorini, Simone (Wiley & Sons, 2019)
    Journal of Biogeography 2019; 46: 2548– 2557
    Aim Ecogeographical patterns have been widely studied in endothermic vertebrates, but relatively few studies have simultaneously examined patterns and causes of gradients in species richness, range size and body size in ectothermic insects. We examined patterns in species richness, mean range size and mean body size of ground beetle assemblages across the biogeographical provinces of Northern Europe, a region that was mostly covered by ice sheets during the latest Ice Age and that presents strong contemporary climatic gradients. Location Northern Europe. Methods We used literature information on the occurrence of ground beetles, and analysed patterns in species richness, mean range size and mean body size across the provinces using generalized linear models and boosted regression tree (BRT) analysis. Results We found a strongly decreasing gradient in species richness with increasing latitude, a strongly unimodal range size-latitude relationship, and a weak unimodal body size-latitude relationship in entire ground beetle assemblages. These gradients also varied among four major genera, suggesting that the overall patterns result from the nuances of smaller clades of ground beetles. The relative importance of contemporary environmental drivers also varied between species richness, mean range size and mean body size in BRT analysis. While species richness increased with mean annual temperature, mean range size showed an opposite relationship. Mean body size was most clearly associated with the precipitation of the driest month. Main Conclusions Our findings showed that the latitudinal species richness gradient was strong, and it was closely related to concomitant variation in temperature, whereas variations in mean range size and mean body size were more complex. These findings suggest that the causes for range size and body size variation in insects may be complex, requiring additional insights from studies conducted at local, regional and continental scales.
  • Cai, Yongjiu; Zhang, You; Hu, Zhixin; Deng, Jianming; Qin, Boqiang; Yin, Hongbin; Wang, Xiaolong; Gong, Zhijun; Heino, Jani (2019)
    Ecological Indicators 103: 713-721
    Metacommunity theory emphasizes that local communities are jointly affected by environmental filtering and spatial processes. However, the roles of spatial processes are often given insufficient attention in bioassessment practices, which may bias the assessments of ecological status based on biotic metrics. Here, we quantified the relative importance and the seasonal stability of spatial processes, natural conditions and human-induced factors in structuring variation in different bioassessment metrics based on macroinvertebrate communities. Our study systems were two extensively sampled large and shallow lakes with strong nutrient gradients related to human disturbance. The roles of different drivers were examined for three kinds of indicators: general diversity, trait-based and taxonomic distinctness metrics, and their performance in characterizing human disturbance was evaluated. Overall, human-induced and spatial factors were all important in explaining variation in the three types of bioassessment metrics. Contrary to our expectations, however, we found that the importance of spatial processes on bioassessment metrics can be comparable to the effects of local environmental conditions at the within-lake scale. Furthermore, the results showed substantial seasonal variability in the relative roles of different drivers, which might be linked to life-cycle seasonality of macroinvertebrates. As expected, trait-based metrics generally were best associated with human-induced variables in both lakes, whereas general diversity and taxonomic distinctness metrics performed poorly. The low effectiveness of taxonomic distinctness metrics might due to low species richness associated with high nutrient levels. To conclude, our results suggest that bioassessment cannot exclusively rely on the idea of environmental filtering even if we focus on fine spatial scales. We hence strongly urge that spatial processes, natural drivers and temporal variability should be better considered in combination in the development and application of bioassessment approaches. In addition, taxonomic distinctness measures should be used with caution, especially for the ecosystems and organism groups typically characterized by low species richness.
  • Vilmi, Annika; Tolonen, Kimmo T.; Karjalainen, Satu Maaria; Heino, Jani (Elsevier, 2019)
    Ecological Indicators, 99, 159-166
    We examined how niche position, niche breadth, biological traits and taxonomic relatedness affect interspecific variation in occupancy and abundance of two commonly-used biological indicator groups, i.e. diatoms and macroinvertebrates. We studied 291 diatom and 103 macroinvertebrate species that occupied the littoral zones of a large (305 km2) highly-connected freshwater system. We collated information on the biological traits and taxonomic relatedness of each species. Using principal coordinates analysis, we formed biological trait and taxonomic vectors describing distances between species and used the resulting vectors as predictor variables. As environmental data, we had site-specific physico-chemical variables, which were used in outlying mean index analyses to determine the niche position and niche breadth of each species. We used linear models to study if and how these two niche parameters and biological traits as well as taxonomic relatedness affected occupancy and abundance. We observed positive occupancy-abundance relationships for both diatoms and macroinvertebrates. We further found that, for both groups, occupancy was better explained by the predictor variables compared with abundance. We also observed that niche parameters, especially niche position, were the main determinants of variation in occupancy and abundance for both diatoms and macroinvertebrates. Local abundances of diatom and macroinvertebrate species were also, to a small degree, affected by biological traits or taxonomic relatedness. We further saw that the relationship between niche position and occupancy was negative, indicating that the more marginal the niche position, the rarer a species is. Our findings provide support for the use of diatoms and macroinvertebrates as ecological indicators as their occupancies and abundances were affected by niche parameters, which is not necessarily always clear in challenging study systems with high connectivity (i.e. high movement of material and species) among sites. These findings also suggest that indices using information on species’ occupancy, abundance and niche requirements are useful in environmental assessment.
  • Zhang, You; Cheng, Long; Li, Kuanyi; Zhang, Lu; Cai, Yongjiu; Wang, Xiaolong; Heino, Jani (2019)
    Limnology and Oceanography 64 (3): 1047-1058
    Eutrophication alters the trophic dynamics in lakes and may result in biotic homogenization. How nutrient enrichment drives patterns of taxonomic and functional (i.e., trait‐based) homogenization of macroinvertebrate assemblages at within‐lake (local) and among‐lake (regional) scales is, however, not well understood. Taxonomic and functional compositions of macroinvertebrate assemblages in 41 lakes of the middle and lower reaches of the Yangtze River and Huaihe River were analyzed at within‐lake and among‐lake scales. Our results indicated that there was a significant difference in macroinvertebrate assemblages among lakes under different trophic status, and that total phosphorus was the major environmental factor that regulated both taxonomic and functional beta diversity of macroinvertebrate assemblages. That the abundances of pollution‐tolerant species (e.g., Limnodrilus hoffmeisteri and Microchironomus tabarui) increased with trophic state contributed the most to among‐lake dissimilarity. Functional beta diversity was significantly positively correlated with taxonomic beta diversity, while functional beta diversity was on average lower than taxonomic beta diversity. A combination of univariate and multivariate techniques revealed that nutrient enrichment homogenized taxonomic and functional diversity of benthic macroinvertebrate assemblages in shallow lakes at within‐lake and among‐lake scales, and that there was an overall trend toward taxonomic homogenization that exceeded the trend of functional homogenization. Thus, taxonomic and functional compositions should be considered simultaneously to improve understanding of the response of aquatic communities to anthropogenic disturbance, as the loss and gain of species may be influenced by species‐specific features, and functional composition may exhibit a relatively high correspondence with changes in environmental conditions.
  • García-Girón, Jorge; Heino, Jani; Iversen, Lars Lønsmann; Helm, Aveliina; Alahuhta, Janne (Elsevier, 2021)
    Science of The Total Environment 786 (2021), 147491
    Patterns of species rarity have long fascinated ecologists, yet most of what we know about the natural world stems from studies of common species. A large proportion of freshwater plant species has small range sizes and are therefore considered rare. However, little is known about the mechanisms and geographical distribution of rarity in the aquatic realm and to what extent diversity of rare species in freshwater plants follows their terrestrial counterparts. Here, we present the first in–depth analysis of geographical patterns, potential deterministic ecogeographical factors and projected scenarios of freshwater vascular plant rarity using 50 × 50 km grid cells across Europe (41°N–71°N) and North America (25°N–78°N). Our results suggest that diversity of rare species shows different patterns in relation to latitude on the two continents, and that hotspots of rarity concentrate in a relatively small proportion of the European and North American land surface, especially in mountainous as well as in climatically rare and stable areas. Interestingly, we found no differences among alternative rarity definitions and measures when delineating areas with notably high diversity of rare species. Our findings also indicate that few variables, namely a combination of current climate, Late Quaternary climate–change velocity and human footprint, are able to accurately predict the location of continental centers of rare species diversity. However, these relationships are not geographically homogeneous, and the underlying factors likely act synergistically. Perhaps more importantly, we provide empirical evidence that current centers of rare species diversity are characterized by higher anthropogenic impacts and might shrink disproportionately within this century as the climate changes. Our reported distributional patterns of species rarity align with the known trends in species richness of other freshwater organisms and may help conservation planners make informed decisions mitigating the effects of climate change and other anthropogenic impacts on biodiversity.
  • Roa-Fuentes, Camilo A.; Heino, Jani; Cianciaruso, Marcus V.; Ferraz, Silvio; Zeni, Jaquelini O.; Casatti, Lilian (2019)
    Freshwater Biology (2019) 64 (3): 447-460
    A multi‐faceted assessment of diversity is needed to improve our understanding of the mechanisms underlying biodiversity patterns and to reveal the impacts of land use alterations on β‐diversity. In this study, we analysed stream fish β‐diversity based on taxonomic, functional, and phylogenetic facets in an intensively cultivated tropical region. We sampled 43 stream reaches in the northwest of São Paulo State, south‐eastern Brazil. Each sampling site was characterised according to catchment‐scale features, landscape dynamic indicators, local‐scale features, and distance between stream reaches as network distance (a proxy for dispersal processes). As response variables, we considered taxonomic, functional, and phylogenetic β‐diversities coupled with a null‐model approach. For each β‐diversity metric, we calculated the mean overall value and tested whether the mean value was different from that expected by chance. To examine variation in β‐diversity for the three facets and determine the relative contributions of predictor variables, we used a distance‐based approach. Taxonomic and functional β‐diversities were higher from the expected value under a null model, suggesting that community assembly of these facets was dominated by deterministic processes. In contrast, phylogenetic β‐diversity was not different from that expected by chance, suggesting that the lineage composition of these assemblages was random. Furthermore, for all three facets, there was a positive environment‐β‐diversity relationship that was determined primarily by local‐scale features, whereas catchment features and landscape dynamic indicators were not important. In addition, none of the β‐diversity facets was correlated with stream network distance, indicating that dispersal processes were not strongly structuring fish assemblages. Our study suggested that although multiple facets of stream fish β‐diversity are ruled mainly by deterministic processes (e.g. species sorting), stochasticity is also important in community assembly. An interesting finding was the mismatch between phylogenetic versus taxonomic and functional β‐diversity. It is likely that the lack of non‐random structure in phylogenetic β‐diversity is due to the variation of phylogenetic signal in some functional traits. Given that landscape dynamic indicators were not correlated with measures of β‐diversity, we suggest that the recent sugarcane expansion in our study area probably has not critically affected stream fish β‐diversity. Also, it is possible that catchment variables presented little variability and did not overwhelm the effect of local environmental variables on β‐diversity. In conclusion, our study suggests that even highly disturbed tropical agroecosystems with a pool of species that is probably decimated, can still display a relatively high β‐diversity determined mainly by species sorting. These findings suggest key environmental features that must be considered in restoration or conservation of β‐diversity in agroecosystems. Specifically, since variation in β‐diversity was explained mainly by local‐scale environmental gradients, conservation schemes would ideally protect enough sites to capture this entire gradient. Overall, the knowledge of multiple facets can foment more effective conservation and restoration actions by providing a more comprehensive view of the structuring factors of assemblages.
  • Suhonen, Jukka; Ilvonen, Jaakko J.; Korkeamäki, Esa; Nokkala, Christina; Salmela, Jukka (Wiley, 2022)
    Ecology and Evolution
    Understanding the risk of local extinction of a species is vital in conservation biology, especially now when anthropogenic disturbances and global warming are severely changing natural habitats. Local extinction risk depends on species traits, such as its geographical range size, fresh body mass, dispersal ability, length of flying period, life history variation, and how specialized it is regarding its breeding habitat. We used a phylogenetic approach because closely related species are not independent observations in the statistical tests. Our field data contained the local extinction risk of 31 odonate (dragonflies and damselflies) species from Central Finland. Species relatedness (i.e., phylogenetic signal) did not affect local extinction risk, length of flying period, nor the geographical range size of a species. However, we found that closely related species were similar in hind wing length, length of larval period, and habitat of larvae. Both phylogenetically corrected (PGLS) and uncorrected (GLM) analysis indicated that the geographical range size of species was negatively related to local extinction risk. Contrary to expectations, habitat specialist species did not have higher local extinction rates than habitat generalist species nor was it affected by the relatedness of species. As predicted, species’ long larval period increased, and long wings decreased the local extinction risk when evolutionary relatedness was controlled. Our results suggest that a relatively narrow geographical range size is an accurate estimate for a local extinction risk of an odonate species, but the species with long life history and large habitat niche width of adults increased local extinction risk. Because the results were so similar between PGLS and GLM methods, it seems that using a phylogenetic approach does not improve predicting local extinctions.
  • Vilmi, Annika; Karjalainen, Satu M.; Wang, Jianjun; Heino, Jani (2019)
    Journal of Biogeography 46 (7): 1419-1428
    Aim To discover how biological traits, ecological preferences and taxonomic relatedness are associated with occupancy and abundance of diatom species across lakes and streams. Location Finland. Taxon Diatoms. Methods We studied 288 diatom species from 492 stream sites and 230 diatom species from 290 lake sites. For each species, we calculated logit-transformed regional occupancy and log-transformed mean local abundance, and further determined biological traits, ecological preferences and taxonomic levels for each species. Boosted regression tree (BRT) analysis was used to reveal the linear and nonlinear associations of biological, ecological and taxonomic predictors with occupancy or abundance of lake and stream diatoms. Results There were strong and positive interspecific occupancy–abundance relationships across both lakes and streams. The BRT models explained more deviances in variation in occupancy and abundance and their relationship for lakes than streams. Biological traits, especially cell size, but also life-form and guild, were the strongest predictors of diatom occupancy and abundance in lakes and streams when controlling for ecological preferences and taxonomic relatedness. Main conclusions In general, biological traits were the strongest predictors of occupancy and abundance in both freshwater systems. Species with similar biological traits thus tended to show similar occupancies and abundances. As indicated by lower explained deviances, occupancy and abundance in streams seemed to be more complexly structured than in lakes, suggesting that these two freshwater system types differ in the formation of biodiversity patterns. This difference may be related to the differences in hydrological connectedness between lakes and streams. Understanding how variations in species’ occupancy and abundance are formed across various waterbodies is important for meaningful biodiversity conservation.