Browsing by Subject "vesiekosysteemit"

Sort by: Order: Results:

Now showing items 1-20 of 27
  • Pieterse, Arnold; Rytkönen, Mari; Hellsten, Seppo (Finnish Environment Institute, 2009)
    Reports of the Finnish Environment Institute 15/2009
  • García-Girón, Jorge; Heino, Jani; García-Criado, Francisco; Fernández-Aláez, Camino; Alahuhta, Janne (Wiley Online Library, 2020)
    Ecography 43 8 (2020)
    Biotic interactions are fundamental drivers governing biodiversity locally, yet their effects on geographical variation in community composition (i.e. incidence-based) and community structure (i.e. abundance-based) at regional scales remain controversial. Ecologists have only recently started to integrate different types of biotic interactions into community assembly in a spatial context, a theme that merits further empirical quantification. Here, we applied partial correlation networks to infer the strength of spatial dependencies between pairs of organismal groups and mapped the imprints of biotic interactions on the assembly of pond metacommunities. To do this, we used a comprehensive empirical dataset from Mediterranean landscapes and adopted the perspective that community assembly is best represented as a network of interacting organismal groups. Our results revealed that the co-variation among the beta diversities of multiple organismal groups is primarily driven by biotic interactions and, to a lesser extent, by the abiotic environment. These results suggest that ignoring biotic interactions may undermine our understanding of assembly mechanisms in spatially extensive areas and decrease the accuracy and performance of predictive models. We further found strong spatial dependencies in our analyses which can be interpreted as functional relationships among several pairs of organismal groups (e.g. macrophytes–macroinvertebrates, fish–zooplankton). Perhaps more importantly, our results support the notion that biotic interactions make crucial contributions to the species sorting paradigm of metacommunity theory and raise the question of whether these biologically-driven signals have been equally underappreciated in other aquatic and terrestrial ecosystems. Although more research is still required to empirically capture the importance of biotic interactions across ecosystems and at different spatial resolutions and extents, our findings may allow decision makers to better foresee the main consequences of human-driven impacts on inland waters, particularly those associated with the addition or removal of key species.
  • Lindholm, Marja; Alahuhta, Janne; Heino, Jani; Hjort, Jan; Toivonen, Heikki (Springer Link, 2020)
    Hydrobiologia 847 (2020)
    Functional homogenisation occurs across many areas and organism groups, thereby seriously affecting biodiversity loss and ecosystem functioning. In this study, we examined how functional features of aquatic macrophytes have changed during a 70-year period at community and species levels in a boreal lake district. At the community level, we examined if aquatic macrophyte communities showed different spatial patterns in functional composition and functional richness in relation to main environmental drivers between the time periods. We also observed each species in functional space to assess if species with certain sets of traits have become more common or rare in the 70-year study period. We found changes in the relationship between functional community composition and the environment. The aquatic macrophyte communities showed different patterns in functional composition between the two time periods, and the main environmental drivers for these changes were partly different. Temporal changes in functional richness were only partially linked to concomitant changes in the environment, while stable factors were more important. Species’ functional traits were not associated with commonness or rarity patterns. Our findings revealed that functional homogenisation has not occurred across these boreal lakes, ranging from small oligotrophic forest lakes to larger lakes affected by human impacts.
  • Kylä-Harakka-Ruonala, Tellervo (National Board of Waters and Environment. Vesi- ja ympäristöhallitus, 1989)
    Publications of the Water and Environment Research Institute 2
    Yhteenveto: Kemikaalien teollisesta käsittelystä vesieliöille aiheutuvien riskien arviointi mallin avulla.
  • Sörenson, Eva; Bertos-Fortis, Mireia; Farnelid, Hanna; Kremp, Anke; Krüger, Karen; Lindehoff, Elin; Legrand, Catherine (Wiley & Sons, 2019)
    Environmental Microbiology Reports, 11: 425-433
    Phytoplankton and bacteria interactions have a significant role in aquatic ecosystem functioning. Associations can range from mutualistic to parasitic, shaping biogeochemical cycles and having a direct influence on phytoplankton growth. How variations in phenotype and sampling location, affect the phytoplankton microbiome is largely unknown. A high-resolution characterization of the bacterial community in cultures of the dinoflagellate Alexandrium was performed on strains isolated from different geographical locations and at varying anthropogenic impact levels. Microbiomes of Baltic Sea Alexandrium ostenfeldii isolates were dominated by Betaproteobacteria and were consistent over phenotypic and genotypic Alexandrium strain variation, resulting in identification of an A. ostenfeldii core microbiome. Comparisons with in situ bacterial communities showed that taxa found in this A. ostenfeldii core were specifically associated to dinoflagellate dynamics in the Baltic Sea. Microbiomes of Alexandrium tamarense and minutum, isolated from the Mediterranean Sea, differed from those of A. ostenfeldii in bacterial diversity and composition but displayed high consistency, and a core set of bacterial taxa was identified. This indicates that Alexandrium isolates with diverse phenotypes host predictable, species-specific, core microbiomes reflecting the abiotic conditions from which they were isolated. These findings enable in-depth studies of potential interactions occurring between Alexandrium and specific bacterial taxa.
  • Vuorio, Kristiina; Mäki, Anita; Salmi, Pauliina; Aalto, Sanni L.; Tiirola, Marja (Frontiers Media S.A., 2020)
    Frontiers in Microbiology 11 (2020) 96
    The composition of phytoplankton community is the basis for environmental monitoring and assessment of the ecological status of aquatic ecosystems. Community composition studies of phytoplankton have been based on time-consuming and expertise-demanding light microscopy analyses. Molecular methods have the potential to replace microscopy, but the high copy number variation of ribosomal genes and the lack of universal primers for simultaneous amplification of prokaryotic and eukaryotic genes complicate data interpretation. In this study, we used our previously developed directional primer-independent high-throughput sequencing (HTS) approach to analyze 16S and 18S rRNA community structures. Comparison of 83 boreal lake samples showed that the relative abundances of eukaryotic phytoplankton at class level and prokaryotic cyanobacteria at order level were consistent between HTS and microscopy results. At the genus level, the results had low correspondence, mainly due to lack of sequences in the reference library. HTS was superior to identify genera that are extensively represented in the reference databases but lack specific morphological characteristics. Targeted metatranscriptomics proved to be a feasible method to complement the microscopy analysis. The metatranscriptomics can also be applied without linking the sequences to taxonomy. However, direct indexing of the sequences to their environmental indicator values needs collections of more comprehensive sample sets, as long as the coverage of molecular barcodes of eukaryotic species remains insufficient.
  • Hyvärinen, Heini; Skyttä, Annaliina; Jernberg, Susanna; Meissner, Kristian; Kuosa, Harri; Uusitalo, Laura (Springer, 2021)
    Environmental Monitoring and Assessment 193: 400
    Global deterioration of marine ecosystems, together with increasing pressure to use them, has created a demand for new, more efficient and cost-efficient monitoring tools that enable assessing changes in the status of marine ecosystems. However, demonstrating the cost-efficiency of a monitoring method is not straightforward as there are no generally applicable guidelines. Our study provides a systematic literature mapping of methods and criteria that have been proposed or used since the year 2000 to evaluate the cost-efficiency of marine monitoring methods. We aimed to investigate these methods but discovered that examples of actual cost-efficiency assessments in literature were rare, contradicting the prevalent use of the term “cost-efficiency.” We identified five different ways to compare the cost-efficiency of a marine monitoring method: (1) the cost–benefit ratio, (2) comparative studies based on an experiment, (3) comparative studies based on a literature review, (4) comparisons with other methods based on literature, and (5) subjective comparisons with other methods based on experience or intuition. Because of the observed high frequency of insufficient cost–benefit assessments, we strongly advise that more attention is paid to the coverage of both cost and efficiency parameters when evaluating the actual cost-efficiency of novel methods. Our results emphasize the need to improve the reliability and comparability of cost-efficiency assessments. We provide guidelines for future initiatives to develop a cost-efficiency assessment framework and suggestions for more unified cost-efficiency criteria.
  • Li, Zhengfei; Wang, Jun; Liu, Zhenyuan; Meng, Xingliang; Heino, Jani; Jiang, Xuankong; Xiong, Xiong; Jiang, Xiaoming; Xie, Zhicai (2019)
    Science of the Total Environment 655:1288-1300
    Examining the relative contribution of local environmental stressors and regional factors in structuring biological communities is essential for biodiversity conservation and environmental assessment, yet their relative roles for different community characterizations remain elusive. Here, we examined the responses of taxonomic and functional structures of stream macroinvertebrate communities to local and regional factors across a human-induced environmental gradient in the Han River Basin, one subtropical biodiversity hotspot in China. Our objectives were: 1) to examine the responses of traditional taxonomic measures and functional traits to anthropogenic disturbances; 2) to compare the relative importance of environmental versus spatial variables and catchment-scale versus reach-scale variables for the two community characterizations. We found that both species and trait compositions performed well in differentiating anthropogenic disturbances, indicating that both taxonomic and functional structures of macroinvertebrate communities were strongly altered by human activities. Particularly, some traits related to life history (e.g., voltinism), resilience and resistance (e.g., adult flying ability) are well suited for predicting changes of communities towards anthropogenic disturbances owing to their mechanistic relationship with environmental gradients. We found that environmental variables played more important roles than spatial effects in structuring both taxonomic and functional facets of macroinvertebrate communities. Environmental filtering was more important in determining functional than taxonomic structure, and the opposite was true for spatial effects. In terms of environmental variables, catchment land-uses played the primary role in determining taxonomic composition, whereas reach-scale variables related to local habitat heterogeneity were more influential for functional structure. Our study highlights the importance of employing metacommunity perspectives and different community characterizations in both theoretical and applied research. For stream bioassessment and management, we argue that the combination of taxonomic and functional characterizations of community should be implemented, as different facets of biological communities responded to different types of anthropogenic disturbances.
  • Heiskanen, Anna-Stiina (Finnish Environment Institute, 1998)
    Monographs of the Boreal Environment Research 8
  • Jyväsjärvi, Jussi; Lehosmaa, Kaisa; Aroviita, Jukka; Turunen, Jarno; Rajakallio, Maria; Marttila, Hannu; Tolkkinen, Mikko; Mykrä, Heikki; Muotka, Timo (Elsevier, 2021)
    Ecological Indicators 121 (2021), 106986
    Degradation of freshwater ecosystems requires efficient tools for assessing the ecological status of freshwater biota and identifying potential cause(s) for their biological degradation. While diatoms and macroinvertebrates are widely used in stream bioassessment, the potential utility of microbial communities has not been fully harnessed. Using data from 113 Finnish streams, we assessed the performance of aquatic leaf-associated fungal decomposers, relative to benthic macroinvertebrates and diatoms, in modelling-based bioassessment. We built multi-taxon niche -type predictive models for fungal assemblages by using genus-based and sequence-based identification levels. We then compared the models’ precision and accuracy in the prediction of reference conditions (number of native taxa) to corresponding models for macroinvertebrates and diatoms. Genus-based fungal model nearly equalled the accuracy and precision of our best model (macroinvertebrates), whereas the sequence-based model was less accurate and tended to overestimate the number of taxa. However, when the models were applied to streams disturbed by anthropogenic stressors (nutrient enrichment, sedimentation and acidification), alone or in combination, the sequence-based fungal assemblages were more sensitive than other taxonomic groups, especially when multiple stressors were present. Microbial leaf decomposition rates were elevated in sediment-stressed streams whereas decomposition attributable to leaf-shredding macroinvertebrates was accelerated by nutrients and decelerated by sedimentation. Comparison of leaf decomposition results to model output suggested that leaf decomposition rates do not detect effectively the presence of multiple simultaneous disturbances. The rapid development of global microbial database may soon enable species-level identification of leaf-associated fungi, facilitating a more precise and accurate modelling of reference conditions in streams using fungal communities. This development, combined with the sensitivity of aquatic fungi in detecting the presence of multiple human disturbances, makes leaf-associated fungal assemblages an indispensable addition in a stream ecologist’s toolbox.
  • Koivusaari, Pirjo; Tejesvi, Mysore V.; Tolkkinen, Mikko; Markkola, Annamari; Mykrä, Heikki; Pirttilä, Anna Maria (MDPI, 2019)
    Frontiers in Microbiology 10:651
    Biomass production and decomposition are key processes in ecology, where plants are primarily responsible for production and microbes act in decomposition. Trees harbor foliar microfungi living on and inside leaf tissues, epiphytes, and endophytes, respectively. Early researchers hypothesized that all fungal endophytes are parasites or latent saprophytes, which slowly colonize the leaf tissues for decomposition. While this has been proven for some strains in the terrestrial environment, it is not known whether foliar microfungi from terrestrial origin can survive or perform decomposition in the aquatic environment. On the other hand, aquatic hyphomycetes, fungi which decompose organic material in stream environments, have been suggested to have a plant-associated life phase. Our aim was to study how much the fungal communities of leaves and litter submerged in streams overlap. Ergosterol content on litter, which is an estimator of fungal biomass, was 5–14 times higher in submerged litter than in senescent leaves, indicating active fungal colonization. Leaves generally harbored a different microbiome prior to than after submergence in streams. The Chao1 richness was significantly higher (93.7 vs. 60.7, p = 0.004) and there were more observed operational taxonomic units (OTUs) (78.3 vs. 47.4, p = 0.004) in senescent leaves than in stream-immersed litter. There were more Leotiomycetes (9%, p = 0.014) in the litter. We identified a group of 35 fungi (65%) with both plant- and water-associated lifestyles. Of these, eight taxa had no previous references to water, such as lichenicolous fungi. Six OTUs were classified within Glomeromycota, known as obligate root symbionts with no previous records from leaves. Five members of Basidiomycota, which are rare in aquatic environments, were identified in the stream-immersed litter only. Overall, our study demonstrates that foliar microfungi contribute to fungal diversity in submerged litter.
  • Wymore, Adam S.; Johnes, Penny J.; Bernal, Susana; Brookshire, E. N. Jack; Fazekas, Hannah M.; Helton, Ashley M.; Argerich, Alba; Barnes, Rebecca T.; Coble, Ashley A.; Dodds, Walter K.; Haq, Shahan; Johnson, Sherri L.; Jones, Jeremy B.; Kaushal, Sujay S.; Kortelainen, Pirkko; López-Lloreda, Carla; Rodríguez-Cardona, Bianca M.; Spencer, Robert G. M.; Sullivan, Pamela L.; Yates, Christopher A.; McDowell, William H. (American Geophysical Union, 2021)
    Global Biogeochemical Cycles, 35(8), e2021GB006953
    A comprehensive cross-biome assessment of major nitrogen (N) species that includes dissolved organic N (DON) is central to understanding interactions between inorganic nutrients and organic matter in running waters. Here, we synthesize stream water N chemistry across biomes and find that the composition of the dissolved N pool shifts from highly heterogeneous to primarily comprised of inorganic N, in tandem with dissolved organic matter (DOM) becoming more N-rich, in response to nutrient enrichment from human disturbances. We identify two critical thresholds of total dissolved N (TDN) concentrations where the proportions of organic and inorganic N shift. With low TDN concentrations (0–1.3 mg/L N), the dominant form of N is highly variable, and DON ranges from 0% to 100% of TDN. At TDN concentrations above 2.8 mg/L, inorganic N dominates the N pool and DON rarely exceeds 25% of TDN. This transition to inorganic N dominance coincides with a shift in the stoichiometry of the DOM pool, where DOM becomes progressively enriched in N and DON concentrations are less tightly associated with concentrations of dissolved organic carbon (DOC). This shift in DOM stoichiometry (defined as DOC:DON ratios) suggests that fundamental changes in the biogeochemical cycles of C and N in freshwater ecosystems are occurring across the globe as human activity alters inorganic N and DOM sources and availability. Alterations to DOM stoichiometry are likely to have important implications for both the fate of DOM and its role as a source of N as it is transported downstream to the coastal ocean.
  • Truchy, Amélie; Sarremejane, Romain; Muotka, Timo; Mykrä, Heikki; Angeler, David G.; Lehosmaa, Kaisa; Huusko, Ari; Johnson, Richard K.; Sponseller, Ryan A.; McKie, Brendan G. (Wiley, 2020)
    Global Change Biology 26 6 (2020)
    Ongoing climate change is increasing the occurrence and intensity of drought episodes worldwide, including in boreal regions not previously regarded as drought prone, and where the impacts of drought remain poorly understood. Ecological connectivity is one factor that might influence community structure and ecosystem functioning post-drought, by facilitating the recovery of sensitive species via dispersal at both local (e.g. a nearby habitat patch) and regional (from other systems within the same region) scales. In an outdoor mesocosm experiment, we investigated how impacts of drought on boreal stream ecosystems are altered by the spatial arrangement of local habitat patches within stream channels, and variation in ecological connectivity with a regional species pool. We measured basal ecosystem processes underlying carbon and nutrient cycling: (a) algal biomass accrual; (b) microbial respiration; and (c) decomposition of organic matter, and sampled communities of aquatic fungi and benthic invertebrates. An 8-day drought event had strong impacts on both community structure and ecosystem functioning, including algal accrual, leaf decomposition and microbial respiration, with many of these impacts persisting even after water levels had been restored for 3.5 weeks. Enhanced connectivity with the regional species pool and increased aggregation of habitat patches also affected multiple response variables, especially those associated with microbes, and in some cases reduced the effects of drought to a small extent. This indicates that spatial processes might play a role in the resilience of communities and ecosystem functioning, given enough time. These effects were however insufficient to facilitate significant recovery in algal growth before seasonal dieback began in autumn. The limited resilience of ecosystem functioning in our experiment suggests that even short-term droughts can have extended consequences for stream ecosystems in the world's vast boreal region, and especially on the ecosystem processes and services mediated by algal biofilms.
  • Ge, Yihao; Liu, Zhenyuan; García-Girón, Jorge; Chen, Xiao; Yan, Yunzhi; Li, Zhengfei; Xie, Zhicai (Elsevier BV, 2022)
    Ecological Indicators
    Under a global change scenario, human-induced impacts alter multiple facets of river biodiversity (i.e., taxonomic, functional and phylogenetic). Hence, focusing on changes in community assembly and different diversity dimensions along anthropogenic impact gradients is of paramount importance for ecological research. Here, we classified stream sites into near-pristine (NP), moderately impacted (MI) and highly impacted (HI) categories based on a comprehensive anthropogenic impact score for the Hanjiang River Basin (China), and tested for differences in patterns of functional (FD) and phylogenetic diversity (PD). Our study suggests that NP sites showed higher FD and PD than impacted streams (MI and HI), with their communities being phylogenetically overdispersed and mostly shaped by random processes. Anthropogenically impacted sites mostly harbored closely related and functionally similar species, although the degree of clustering varied between NP, MI and HI streams, thereby confirming predictions that human activities contribute to the loss of evolutionary history and functional space in running waters. Importantly, we identified the influence of underlying deterministic mechanisms on the homogenization of both functional and phylogenetic facets of diversity. Similarly, NP sites exhibited the greatest proportion of evolutionarily distinct lineages, suggesting that anthropogenic impacts also threaten phylogenetically unique clades. Overall, this study contributed to a better understanding of multiple diversity patterns in aquatic insect communities by generating new empirical evidence of human-induced degradation of subtropical stream ecosystems in China.
  • Furman, Eeva; Pihlajamäki, Mia; Välipakka, Pentti; Myrberg, Kai (Suomen ympäristökeskus, 2014)
    Esityspaketin alkuosa tutustuttaa Itämeren fyysikaalis-kemiallisiin ja biologisiin ominaispiirteisiin. Toisessa osassa pohditaan alueen haasteita sekä yhteiskunnallisia vaikutusmahdollisuuksia Itämeren kestävän käytön turvaamiseksi nyt ja tulevaisuudessa. Lopuksi tietopaketti haastaa lukijansa kysymyksellä: Mitä sinä voit tehdä Itämeren hyväksi?
  • Heino, Jani; Alahuhta, Janne; Bini, Luis Mauricio; Cai, Yongjiu; Heiskanen, Anna-Stiina; Hellsten, Seppo; Kortelainen, Pirkko; Kotamaki, Niina; Tolonen, Kimmo T.; Vihervaara, Petteri; Vilmi, Annika; Angeler, David G. (Wiley & Sons, 2021)
    Biological Reviews 96(1), 89-106
    The Anthropocene presents formidable threats to freshwater ecosystems. Lakes are especially vulnerable and important at the same time. They cover only a small area worldwide but harbour high levels of biodiversity and contribute disproportionately to ecosystem services. Lakes differ with respect to their general type (e.g. land-locked, drainage, floodplain and large lakes) and position in the landscape (e.g. highland versus lowland lakes), which contribute to the dynamics of these systems. Lakes should be generally viewed as ‘meta-systems’, whereby biodiversity is strongly affected by species dispersal, and ecosystem dynamics are contributed by the flow of matter and substances among locations in a broader waterscape context. Lake connectivity in the waterscape and position in the landscape determine the degree to which a lake is prone to invasion by non-native species and accumulation of harmful substances. Highly connected lakes low in the landscape accumulate nutrients and pollutants originating from ecosystems higher in the landscape. The monitoring and restoration of lake biodiversity and ecosystem services should consider the fact that a high degree of dynamism is present at local, regional and global scales. However, local and regional monitoring may be plagued by the unpredictability of ecological phenomena, hindering adaptive management of lakes. Although monitoring data are increasingly becoming available to study responses of lakes to global change, we still lack suitable integration of models for entire waterscapes. Research across disciplinary boundaries is needed to address the challenges that lakes face in the Anthropocene because they may play an increasingly important role in harbouring unique aquatic biota as well as providing ecosystem goods and services in the future.
  • Verta, Matti (National Board of Waters and the Environment. Vesi- ja ympäristöhallitus, 1990)
    Publications of the Water and Environment Research Institute 6
    Yhteenveto: Elohopea Suomen metsäjärvissä ja tekoaltaissa: ihmisen vaikutus kuormitukseen ja pitoisuuksiin kaloissa.
  • Cai, Yongjiu; Zhang, You; Hu, Zhixin; Deng, Jianming; Qin, Boqiang; Yin, Hongbin; Wang, Xiaolong; Gong, Zhijun; Heino, Jani (2019)
    Ecological Indicators 103: 713-721
    Metacommunity theory emphasizes that local communities are jointly affected by environmental filtering and spatial processes. However, the roles of spatial processes are often given insufficient attention in bioassessment practices, which may bias the assessments of ecological status based on biotic metrics. Here, we quantified the relative importance and the seasonal stability of spatial processes, natural conditions and human-induced factors in structuring variation in different bioassessment metrics based on macroinvertebrate communities. Our study systems were two extensively sampled large and shallow lakes with strong nutrient gradients related to human disturbance. The roles of different drivers were examined for three kinds of indicators: general diversity, trait-based and taxonomic distinctness metrics, and their performance in characterizing human disturbance was evaluated. Overall, human-induced and spatial factors were all important in explaining variation in the three types of bioassessment metrics. Contrary to our expectations, however, we found that the importance of spatial processes on bioassessment metrics can be comparable to the effects of local environmental conditions at the within-lake scale. Furthermore, the results showed substantial seasonal variability in the relative roles of different drivers, which might be linked to life-cycle seasonality of macroinvertebrates. As expected, trait-based metrics generally were best associated with human-induced variables in both lakes, whereas general diversity and taxonomic distinctness metrics performed poorly. The low effectiveness of taxonomic distinctness metrics might due to low species richness associated with high nutrient levels. To conclude, our results suggest that bioassessment cannot exclusively rely on the idea of environmental filtering even if we focus on fine spatial scales. We hence strongly urge that spatial processes, natural drivers and temporal variability should be better considered in combination in the development and application of bioassessment approaches. In addition, taxonomic distinctness measures should be used with caution, especially for the ecosystems and organism groups typically characterized by low species richness.
  • Kuglerová, Lenka; Hasselquist, Eliza Maher; Sponseller, Ryan Allen; Muotka, Timo; Hallsby, Goran; Laudon, Hjalmar (Elsevier, 2021)
    Science of The Total Environment 756 (2021), 143521
    In this paper we describe how forest management practices in Fennoscandian countries, namely Sweden and Finland, expose streams to multiple stressors over space and time. In this region, forestry includes several different management actions and we explore how these may successively disturb the same location over 60–100 year long rotation periods. Of these actions, final harvest and associated road construction, soil scarification, and/or ditch network maintenance are the most obvious sources of stressors to aquatic ecosystems. Yet, more subtle actions such as planting, thinning of competing saplings and trees, and removing logging residues also represent disturbances around waterways in these landscapes. We review literature about how these different forestry practices may introduce a combination of physicochemical stressors, including hydrological change, increased sediment transport, altered thermal and light regimes, and water quality deterioration. We further elaborate on how the single stressors may combine and interact and we consequently hypothesise how these interactions may affect aquatic communities and processes. Because production forestry is practiced on a large area in both countries, the various stressors appear multiple times during the rotation cycles and potentially affect the majority of the stream network length within most catchments. We concluded that forestry practices have traditionally not been the focus of multiple stressor studies and should be investigated further in both observational and experimental fashion. Stressors accumulate across time and space in forestry dominated landscapes, and may interact in unpredictable ways, limiting our current understanding of what forested stream networks are exposed to and how we can design and apply best management practices.
  • Porvari, Petri (Finnish Environment Institute, 2003)
    Monographs of the Boreal Environment Research 23
    Deposition, catchment runoff concentrations and fluxes, lake water concentrations of total mercury (TotHg) and methyl mercury (MeHg), and potential Hg methylation in different compartments of boreal ecosystem and TotHg concentrations of fish in boreal and tropical reservoirs were studied. The results provide new knowledge of behaviour and cycling of Hg for Hg pollution protection policy. Anthropogenic and natural Hg emissions have led to increased Hg deposition and further accumulation of Hg in soil. A decline of 50% in atmospheric TotHg deposition from the late 1980s to 2000 was observed in southern Finland. During the period of 1995–2000 TotHg and MeHg deposition remained unchanged in southern Finland. The vast storage of Hg in forest soil had a determining role as a source of TotHg and MeHg for forest drainage lakes. Only small variations in TotHg concentrations and output fluxes in runoff waters were detected among the catchments, but clearly the highest MeHg concentrations and output fluxes came from the pure peatland and the lowest from forested upland catchments. This indicates more effective MeHg production in peatlands than in uplands. Silvicultural treatment of a small spruce forest catchment increased significantly the runoff concentrations and export of TotHg and MeHg. The results indicated that clear cutting and soil treatment may significantly increase the mobility of TotHg and MeHg accumulated in forest soil and silvicultural treatment is thus an important factor for the total input of Hg and MeHg to boreal lakes. Flooding of forest soils (humus and peat) released TotHg and MeHg to water column and enhanced Hg methylation. Moreover, Hg methylation process was favoured by anoxic conditions. Flooding of soils on a large scale, i.e. when constructing man-made lakes (reservoirs) caused elevated fish Hg levels through enhanced Hg methylation. Hg accumulation as elevated TotHg concentrations in fish (especially predatory fish) was observed both in boreal (Ostrobothnia and Lapland, Finland) and tropical reservoirs (Amazonia, Brazil). In Brazil, the highest mercury levels were recorded in predatory fish, the intermediate levels in planktivorous and omnivorous fish and the lowest in herbivorous fish. In Finland, even 20 years after flooding, the TotHg concentrations of the predatory fish (northern pike, Esox lucius L.) in some of the reservoirs exceeded the upper limit for fish consumption and in Brazil, 6 years after flooding 92% of all predatory fish sampled exceeded the safety limit for Hg concentrations in fish. The observations from Finnish and Brazilian reservoirs showed that the duration of the phenomenon of Hg contamination of fish in reservoirs may last for 15–30 years. The Hg contamination succession in fish appears to be similar in boreal and tropical reservoirs. The results of this work distinctly indicate the determining role of catchment as a MeHg source to forest lakes. The effects of forestry practices on Hg export emphasise the need for more research on this issue. The long lasting Hg contamination in reservoirs regardless of climatological zone requires restrictions of predatory fish consumption especially where people utilise a large amounts of fish for food.