Browsing by Subject "virustaudit"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Eriksson-Kallio, Anna Maria (Finnish Food Authority, 2022)
    Finnish Food Authority Research Reports 1/2022
    Infectious pancreatic necrosis (IPN) is a highly contagious viral disease of fish causing economic losses in farmed salmonid aquaculture worldwide. This research aimed to elucidate the epidemiological, pathological and genetic factors underlying IPNV infection occurring in farmed fish in Finland. The work was carried out by describing the epidemiology of an IPNV outbreak in Finnish inland waters in 2012–2014 and by characterizing the Finnish IPNV isolates occurring in inland waters using genetic, histopathological and immunological approaches. Furthermore, molecular characterization of Finnish IPNV isolates collected in 2000–2015 was performed. Finally, an infection trial was conducted to gather further information on the pathogenicity of three IPN genogroups in Finnish rainbow trout. IPNV genogroups 2, 5 and 6 have been found to occur in Finland. Of these, genogroup 2 is the most widespread. All three genogroups occur in the sea area. The IPNV epidemic starting in 2012 in inland waters was caused by genogroup 2. Retrospectively, a genetically similar viral strain to that of the inland strains was already found to occur in 2011 in the sea area, making it likely that the epidemic originated from the sea area. Molecular characterization of the isolated IPN viruses revealed little genetic variation within the Finnish genogroup 2 and 5 isolates. Finnish genogroup 2 isolates appeared to form their own subgroup, whereas genogroup 5 isolates formed a more consistent cluster with previously published isolates. Genogroup 6 consisted of two subgroups. The divergence of genogroup 6 IPNV within the aquabirnaviruses was further demonstrated by the sequence data from our studies. Prior to our studies, only partial VP1 genogroup 6 IPNV sequences were available at the NCBI GenBank. In our study, two IPNV genogroup 6 isolates were sequenced for the complete coding regions of viral genome segments A and B (polyprotein sequences). The Finnish IPNV isolates studied demonstrated virulence-associated amino acid patterns in the viral capsid protein (VP2) gene region previously associated with avirulence in genogroup 5, except for IPNV genogroup 6, which exhibits an amino acid pattern that has not been connected in the literature with either virulence or avirulence. In the infection trial, mortalities noted in all the treatment groups were only moderate at most. The highest mortalities were caused by the Finnish IPNV genogroup 5 (10.3% to 38.2%), whereas IPNV genogroup 2 caused variable mortalities (3.5% to 28.3%) and the Norwegian IPNV genogroup 5 virus used as a positive control caused only negligible mortalities. The IPNV genogroup 6 virus was not re-isolated in the infection trial, although some elevated mortalities were seen in one tank (8%), leaving the virulence of this genogroup still uncertain. Finnish inland waters harbour the most IPNV-susceptible life stages of fish, and here, an infection caused by a virulent strain of IPNV would thus potentially have the greatest negative economic impact on Finnish rainbow trout farming. Continuation of the legislative disease control of IPN genogroup 5 in Finnish inland waters is thus supported by this study. In general, IPN is considered a coldwater disease, with a peak in clinical disease and increased mortality at 10 °C. However, in Finland, the occurrence of virus at exceptionally high temperatures, with clinical signs of disease and histopathological changes typical of IPN, was noted at water temperatures as high as 21°C. The occurrence of IPNV in higher water temperatures has economic consequences, as it lengthens the susceptible time period for the disease. Moreover, rising water temperatures and longer warm water periods due to global warming may increase the disease-causing importance of this genogroup in the future.
  • Lillström, Carolo Alexandro (excudebant J. C. Frenckell & fil, 1833)
  • Vennerström, Pia (Finnish Food Authority, 2020)
    Finnish Food Authority Research Reports 3/2020
    Viral haemorrhagic septicaemia (VHS) was isolated for the first time in Finland in 2000 from a Finnish brackish water fish farm farming rainbow trout in net pens in the Province of Åland, Baltic Sea. The efforts to eradicate the disease from the Åland islands were not successful. Epidemical factors, needed for VHS management in viral haemorrhagic septicaemia virus (VHSV) positive brackish water fish farms, were studied in a 3-year project, the results of which are presented in this thesis. The study compared the ability of four different surveillance procedures and three diagnostic tests to reveal whether a fish population was infected with VHSV. The programme that was conducted as syndromic surveillance, where the farmers sent in samples for diagnostics if any signs of possible fish disease were noticed, clearly outperformed the other three programmes, which were based on active surveillance. A real-time reverse transcriptase polymerase chain reaction method proved to be at least as sensitive in detecting acute VHSV infections as virus isolation in cell culture, which is considered the gold-standard method for diagnosing VHSV. An ELISA method was used to test fish serums for antibodies against VHSV and was found to be a promising tool in VHSV eradication, particularly for screening populations during the follow-up period, before declaring an area free of infection. During the epidemics it was a common suspicion wild fish being the most likely source of the reinfections of VHSV in infected fish farms in the restriction area. Wild fish of 17 different species from VHS-positive fish farms were screened for VHSV during 2005-2008. In addition, uninfected wild perch, roach and farmed whitefish were introduced to a fish farm with rainbow trout experiencing a clinical outbreak of VHS. The wild fish did not test positive on any occasion, but whitefish were infected and started to replicate VHSV for a short time. The replication of the virus in whitefish was verified using a new qRT-PCR method that tests separately for positive- and negative-sense viral sequences in infected organ samples. The presence of VHSV in the environment on fish farms or processing plants farming or handling VHSV-positive fish was studied by testing samples for VHSV from wild blue mussels (Mytilus edulis) living in infected fish farms. Sea water and sediment from infected fish farms were also tested for VHSV. Wild uninfected blue mussels were also challenged with VHSV in two different challenge tests. Wastewater from a processing plant was tested before and after disinfection treatment. Blue mussels were not found to be carriers of VHSV on any occasion. Sea water tested positive for VHSV RNA more often during the wintertime when water temperature was close to 0°C and sunlight (UV light) sparse. Most wastewater samples collected before the disinfection treatment were positive for VHSV, but samples collected after disinfection were all negative regarding VHSV RNA. Contacts between the processing plants and the fish farms in the restriction area of VHS were very common during this study. Processing plants are usually the place where fish food and farming equipment are stored, including boats that are used for the daily servicing of the farming localities. According to the results of this study, this contact was considered a major risk for disease spread, especially during the cold part of the year when daylight is also short. Altogether, this thesis compiles the results of a series of studies targeting factors that could affect the infection pressure of VHSV on disease free fish populations.