Browsing by Subject "visual threshold"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Tienhaara, Samu (Helsingin yliopisto, 2021)
    In visual detection, thresholds for light increments are higher than thresholds for light decrements. This asymmetry has been often ascribed to the differential processing of ON and OFF pathways in the retina, as ON and OFF retinal ganglion cells have been found to respond to increments and decrements, respectively. In this study, the performance of human participants in detecting spatially restricted (diameter 1.17 degrees of visual angle) and unrestricted increments and decrements was measured using a two-interval forced choice task. Background light intensities ranged from darkness through scotopic to low photopic levels. The detection threshold asymmetry found in earlier experiments was replicated with local stimuli. In contrast, however, the asymmetry between increment and decrement detection thresholds disappeared with fullfield stimuli. An ideal observer model was constructed to evaluate the role of two factors, Poisson variations and dark noise, in determining detection thresholds. Based on the model, these factors are insufficient to account for the increment-decrement asymmetry.
  • Takeshita, Daisuke; Smeds, Lina; Ala-Laurila, Petri (2017)
    Visually guided behaviour at its sensitivity limit relies on single-photon responses originating in a small number of rod photoreceptors. For decades, researchers have debated the neural mechanisms and noise sources that underlie this striking sensitivity. To address this question, we need to understand the constraints arising from the retinal output signals provided by distinct retinal ganglion cell types. It has recently been shown in the primate retina that On and Off parasol ganglion cells, the cell types likely to underlie light detection at the absolute visual threshold, differ fundamentally not only in response polarity, but also in the way they handle single-photon responses originating in rods. The On pathway provides the brain with a thresholded, low-noise readout and the Off pathway with a noisy, linear readout. We outline the mechanistic basis of these different coding strategies and analyse their implications for detecting the weakest light signals. We show that high-fidelity, nonlinear signal processing in the On pathway comes with costs: more single-photon responses are lost and their propagation is delayed compared with the Off pathway. On the other hand, the responses of On ganglion cells allow better intensity discrimination compared with the Off ganglion cell responses near visual threshold. This article is part of the themed issue 'Vision in dim light'.
  • Yovanovich, Carola A. M.; Koskela, Sanna M.; Nevala, Noora; Kondrashev, Sergei L.; Kelber, Almut; Donner, Kristian (2017)
    The presence of two spectrally different kinds of rod photoreceptors in amphibians has been hypothesized to enable purely rod-based colour vision at very low light levels. The hypothesis has never been properly tested, so we performed three behavioural experiments at different light intensities with toads (Bufo) and frogs (Rana) to determine the thresholds for colour discrimination. The thresholds of toads were different in mate choice and prey-catching tasks, suggesting that the differential sensitivities of different spectral cone types as well as task-specific factors set limits for the use of colour in these behavioural contexts. In neither task was there any indication of rod-based colour discrimination. By contrast, frogs performing phototactic jumping were able to distinguish blue from green light down to the absolute visual threshold, where vision relies only on rod signals. The remarkable sensitivity of this mechanism comparing signals from the two spectrally different rod types approaches theoretical limits set by photon fluctuations and intrinsic noise. Together, the results indicate that different pathways are involved in processing colour cues depending on the ecological relevance of this information for each task. This article is part of the themed issue 'Vision in dim light'.
  • Yovanovich, Carola A. M.; Koskela, Sanna M.; Nevala, Noora; Kondrashev, Sergei L.; Kelber, Almut; Donner, Kristian (The Royal Society of Chemistry, 2017)
    The presence of two spectrally different kinds of rod photoreceptors in amphibians has been hypothesized to enable purely rod-based colour vision at very low light levels. The hypothesis has never been properly tested, so we performed three behavioural experiments at different light intensities with toads (Bufo) and frogs (Rana) to determine the thresholds for colour discrimination. The thresholds of toads were different in mate choice and prey-catching tasks, suggesting that the differential sensitivities of different spectral cone types as well as task-specific factors set limits for the use of colour in these behavioural contexts. In neither task was there any indication of rod-based colour discrimination. By contrast, frogs performing phototactic jumping were able to distinguish blue from green light down to the absolute visual threshold, where vision relies only on rod signals. The remarkable sensitivity of this mechanism comparing signals from the two spectrally different rod types approaches theoretical limits set by photon fluctuations and intrinsic noise. Together, the results indicate that different pathways are involved in processing colour cues depending on the ecological relevance of this information for each task. This article is part of the themed issue 'Vision in dim light'.