Browsing by Subject "water quality"

Sort by: Order: Results:

Now showing items 1-20 of 45
  • Teurlincx, Sven; van Wijk, Dianneke; Mooij, Wolf M.; Kuiper, Jan J.; Huttunen, Inese; Brederveld, Robert J.; Chang, Manqi; Janse, Jan H.; Woodward, Ben; Hu, Fenjuan; Janssen, Annette BG (Elsevier, 2019)
    Current Opinion in Environmental Sustainability 40 (2019), pages 21-29
    Food production for a growing world population relies on application of fertilisers and pesticides on agricultural lands. However, these substances threaten surface water quality and thereby endanger valued ecosystem services such as drinking water supply, food production and recreational water use. Such deleterious effects do not merely arise on the local scale, but also on the regional scale through transport of substances as well as energy and biota across the catchment. Here we argue that aquatic ecosystem models can provide a process-based understanding of how these transports by water and organisms as vectors affect – and are affected by – ecosystem state and functioning in networks of connected lakes. Such a catchment scale approach is key to setting critical limits for the release of substances by agricultural practices and other human pressures on aquatic ecosystems. Thereby, water and food production and the trade-offs between them may be managed more sustainably.
  • Västilä, Kaisa; Väisänen, Sari; Koskiaho, Jari; Lehtoranta, Virpi; Karttunen, Krister; Kuussaari, Mikko; Järvelä, Juha; Koikkalainen, Kauko (MDPI, 2021)
    Sustainability 13, 16
    Conventional dredging of ditches and streams to ensure agricultural drainage and flood mitigation can have severe environmental impacts. The aim of this paper is to investigate the potential benefits of an alternative, nature-based two-stage channel (TSC) design with floodplains excavated along the main channel. Through a literature survey, investigations at Finnish field sites and expert interviews, we assessed the performance, costs, and monetary environmental benefits of TSCs in comparison to conventional dredging, as well as the bottlenecks in their financing and governance. We found evidence supporting the expected longer-term functioning of drainage as well as larger plant and fish biodiversity in TSCs compared to conventional dredging. The TSC design likely improves water quality since the floodplains retain suspended sediment and phosphorus and remove nitrogen. In the investigated case, the additional value of phosphorus retention and conservation of protected species through the TSC design was 2.4 times higher than the total costs. We demonstrate how TSCs can be made eligible for the obligatory vegetated riparian buffer of the European Union agri-environmental subsidy scheme (CAP-AES) by optimising their spatial application with respect to other buffer measures, and recommend to publicly finance their additional costs compared to conventional dredging at priority sites. Further studies on biodiversity impacts and long-term performance of two-stage channels are required.
  • Herve, Sirpa; Paasivirta, Jaakko; Ahkola, Heidi; Heinonen, Pertti (Finnish Environment Institute, 2010)
    Reports of the Finnish Environment Institute 14/2010
  • Skarbøvik, Eva; Jordan, Philip; Lepistö, Ahti; Kronvang, Brian; Stutter, Marc I.; Vermaat, Jan E. (Springer Nature, 2020)
    In the future, the world is expected to rely increasingly on renewable biomass resources for food, fodder, fibre and fuel. The sustainability of this transition to bioeconomy for our water systems depends to a large extent on how we manage our land resources. Changes in land use together with climate change will affect water quantity and quality, which again will have implications for the ecosystem services provided by water resources. These are the main topics of this Ambio special issue on “Environmental effects of a green bio-economy”. This paper offers a summary of the eleven papers included in this issue and, at the same time, outlines an approach to quantify and mitigate the impacts of bioeconomy on water resources and their ecosystem services, with indications of useful tools and knowledge needs.
  • Bhattacharjee, Joy; Marttila, Hannu; Launiainen, Samuli; Lepistö, Ahti; Kløve, Bjørn (Elsevier, 2021)
    Science of The Total Environment 779 (2021), 146419
    Maintaining and improving surface water quality requires knowledge of nutrient and sediment loads due to past and future land-use practices, but historical data on land cover and its changes are often lacking. In this study, we tested whether land-use-specific export coefficients can be used together with satellite images (Landsat) and/or regional land-use statistics to estimate riverine nutrient loads and concentrations of total nitrogen (TN), total phosphorus (TP), and suspended solids (SS). The study area, Simojoki (3160 km2) in northern Finland, has been intensively drained for peatland forestry since the 1960s. We used different approaches at multiple sub-catchment scales to simulate TN, TP, and SS export in the Simojoki catchment. The uncertainty in estimates based on specific export coefficients was quantified based on historical land-use changes (derived from Landsat data), and an uncertainty boundary was established for each land-use. The uncertainty boundary captured at least 60% of measured values of TN, TP, and SS loads or concentrations. However, the uncertainty in estimates compared with measured values ranged from 7% to 20% for TN, 0% to 18% for TP, and 13% to 43% for SS for different catchments. Some discrepancy between predicted and measured loads and concentrations was expected, as the method did not account for inter-annual variability in hydrological conditions or river processes. However, combining historical land-use change estimates with simple export coefficients can be a practical approach for evaluating the influence on water quality of historical land-use changes such as peatland drainage for forest establishment.
  • Cano Bernal, José Enrique; Rankinen, Katri; Thielking, Sophia (Academic Press., 2022)
    Journal of Environmental Management
    The majority of the carbon worldwide is in soil. In a river catchment, the tight relationship between soil, water and climate makes carbon likely to be eroded and transported from the soil to the rivers. There are multiple variables which can trigger and accelerate the process. In order to assess the importance of the factors involved, and their interactions resulting in the changes in the carbon cycle within catchments, we have studied the catchments of 26 Finnish rivers from 2000 to 2019. These catchments are distributed all over Finland, but we have grouped them into three categories: southern, peatland and northern. We have run a boosted regression tree (BRT) analysis on chemical, physical, climatic and anthropogenic factors to determine their influence on the variations of total organic carbon (TOC) concentration. TOC concentration has decreased in Finland between 2000 and 2019 by 0.91 mg/l, driven principally by forest ditching and % old forest in the catchment. Old forest is especially dominant in the northern catchments with an influence on TOC of 40.5%. In southern and peatland catchments, average precipitation is an important factor to explain the changes in TOC whilst in northern catchments, organic fields have more influence.
  • Hashemi, Fatemeh; Pohle, Ina; Pullens, Johannes W. M; Tornbjerg, Henrik; Kyllmar, Katarina; Marttila, Hannu; Lepistö, Ahti; Klove, Bjorn; Futter, Martyn; Kronvang, Brian (MDPI, 2020)
    Water 12 6 (2020)
    Optimal nutrient pollution monitoring and management in catchments requires an in-depth understanding of spatial and temporal factors controlling nutrient dynamics. Such an understanding can potentially be obtained by analysing stream concentration–discharge (C-Q) relationships for hysteresis behaviours and export regimes. Here, a classification scheme including nine different C-Q types was applied to a total of 87 Nordic streams draining mini-catchments (0.1–65 km2). The classification applied is based on a combination of stream export behaviour (dilution, constant, enrichment) and hysteresis rotational pattern (clock-wise, no rotation, anti-clockwise). The scheme has been applied to an 8-year data series (2010–2017) from small streams in Denmark, Sweden, and Finland on daily discharge and discrete nutrient concentrations, including nitrate (NO3−), total organic N (TON), dissolved reactive phosphorus (DRP), and particulate phosphorus (PP). The dominant nutrient export regimes were enrichment for NO3− and constant for TON, DRP, and PP. Nutrient hysteresis patterns were primarily clockwise or no hysteresis. Similarities in types of C-Q relationships were investigated using Principal Component Analysis (PCA) considering effects of catchment size, land use, climate, and dominant soil type. The PCA analysis revealed that land use and air temperature were the dominant factors controlling nutrient C-Q types. Therefore, the nutrient export behaviour in streams draining Nordic mini-catchments seems to be dominantly controlled by their land use characteristics and, to a lesser extent, their climate.
  • Marttila, H.; Tammela, S.; Mustonen, K.-R.; Louhi, P.; Muotka, Timo; Mykrä, Heikki; Klove, B. (IWA Publishing, 2019)
    Hydrology Research 1 June 2019; 50 (3): 878–885
    We conducted a series of tracer test experiments in 12 outdoor semi-natural flumes to assess the effects of variable flow conditions and sand addition on hyporheic zone conditions in gravel beds, mimicking conditions in headwater streams under sediment pressure. Two tracer methods were applied in each experiment: 2–5 tracer-pulse tests were conducted in all flumes and pulses were monitored at three distances downstream of the flume inlet (0 m, 5 m and 10 m, at bed surface), and in pipes installed into the gravel bed at 5 m and 10 m distances. The tracer breakthrough curves (total of 120 tracer injections) were then analysed with a one-dimensional solute transport model (OTIS) and compared with data from the gravel pipes in point-dilution pulse tests. Sand addition had a strong negative effect on horizontal fluxes (qh), whereas the fraction of the median travel time due to transient storage (F200) was determined more by flow conditions. These results suggest that even small additions of sand can modify the hyporheic zone exchange in gravel beds, thus making headwater streams with low sediment transport capacity particularly vulnerable to sediments transported into the stream from catchment land use activities.
  • Aaltonen, Heidi; Tuukkanen, Tapio; Palviainen, Marjo; Laurén, Annamari (Ari); Tattari, Sirkka; Piirainen, Sirpa; Mattsson, Tuija; Ojala, Anne; Launiainen, Samuli; Finér, Leena (2021)
    Understanding the anthropogenic and natural factors that affect runoff water quality is essential for proper planning of water protection and forest management, particularly in the changing climate. We measured water quality and runoff from 10 unmanaged and 20 managed forested headwater catchments (7-12,149 ha) located in Finland. We used linear mixed effect models to test whether the differences in total organic carbon (TOC), total nitrogen (TN) and total phosphorus (TP) export and concentrations observed can be explained by catchment characteristics, land use, forest management, soil fertility, tree volume and hydrometeorological variables. Results show that much of variation in TOC, TN and TP concentrations and export was explained by drainage, temperature sum, peatland percentage and the proportion of arable area in the catchment. These models explained 45-63% of variation in concentrations and exports. Mean annual TOC export in unmanaged catchments was 56.4 +/- 9.6 kg ha(-1) a(-1), while in managed it was 79.3 +/- 3.3 kg ha(-1) a(-1). Same values for TN export were 1.43 +/- 0.2 kg ha(-1) a(-1) and 2.31 +/- 0.2 kg ha(-1) a(-1), while TP export was 0.053 +/- 0.009 kg ha(-1) a(-1) and 0.095 +/- 0.008 kg ha(-1) a(-1) for unmanaged and managed, respectively. Corresponding values for concentrations were: TOC 17.7 +/- 2.1 mg L-1 and 28.7 +/- 1.6 mg L-1, for TN 420 +/- 45 mu g L-1 and 825 +/- 51 mu g L-1 and TP 15.3 +/- 2.3 mu g L-1 and 35.6 +/- 3.3 mu g L-1. Overall concentrations and exports were significantly higher in managed than in unmanaged catchments. Long term temperature sum had an increasing effect on all concentrations and exports, indicating that climate warming may set new challenges to controlling nutrient loads from catchment areas.
  • Hintz, William D.; Arnott, Shelley E.; Symons, Celia C.; Greco, Danielle A.; McClymont, Alexandra; Brentrup, Jennifer A.; Canedo-Arguelles, Miguel; Derry, Alison M.; Downing, Amy L.; Gray, Derek K.; Melles, Stephanie J.; Relyea, Rick A.; Rusak, James A.; Searle, Catherine L.; Astorg, Louis; Baker, Henry K.; Beisner, Beatrix E.; Cottingham, Kathryn L.; Ersoy, Zeynep; Espinosa, Carmen; Franceschini, Jaclyn; Giorgio, Angelina T.; Göbeler, Norman; Hassal, Emily; Hebert, Marie-Pier; Huynh, Mercedes; Hylander, Samuel; Jonasen, Kacie L.; Kirkwood, Andrea E.; Langenheder, Silke; Langvall, Ola; Laudon, Hjalmar; Lind, Lovisa; Lundgren, Maria; Proia, Lorenzo; Schuler, Matthew S.; Shurin, Jonathan B.; Steiner, Christopher F.; Striebel, Maren; Thibodeau, Simon; Urrutia-Cordero, Pablo; Vendrell-Puigmitja, Lidia; Weyhenmeyer, Gesa A. (2022)
    Human-induced salinization caused by the use of road deicing salts, agricultural practices, mining operations, and climate change is a major threat to the biodiversity and functioning of freshwater ecosystems. Yet, it is unclear if freshwater ecosystems are protected from salinization by current water quality guidelines. Leveraging an experimental network of land-based and in-lake mesocosms across North America and Europe, we tested how salinization-indicated as elevated chloride (C-) concentration-will affect lake food webs and if two of the lowest Cl- thresholds found globally are sufficient to protect these food webs. Our results indicated that salinization will cause substantial zooplankton mortality at the lowest Cl- thresholds established in Canada (120 mg Cl-/L) and the United States (230 mg Cl-/L) and throughout Europe where Cl- thresholds are generally higher. For instance, at 73% of our study sites, Cl- concentrations that caused a >= 50% reduction in cladoceran abundance were at or below Cl thresholds in Canada, in the United States, and throughout Europe. Similar trends occurred for copepod and rotifer zooplankton. The loss of zooplankton triggered a cascading effect causing an increase in phytoplankton biomass at 47% of study sites. Such changes in lake food webs could alter nutrient cycling and water clarity and trigger declines in fish production. Current Cl- thresholds across North America and Europe clearly do not adequately protect lake food webs. Water quality guidelines should be developed where they do not exist, and there is an urgent need to reassess existing guidelines to protect lake ecosystems from human-induced salinization.
  • Gunia, M.; Laine, M.; Malve, O.; Kallio, K.; Kervinen, M.; Anttila, S.; Kotamäki, N.; Siivola, E.; Kettunen, J.; Kauranne, T. (Elsevier, 2022)
    Environmental modelling and software
    Highlights •Operational data fusion system for coastal water quality monitoring was implemented. •Remote sensing and in-situ data sources are combined using ensemble Kalman smoother. •Result uncertainty is quantified to improve future data collection. •Simple process model captures relevant dynamics in presence of significant data gaps. Abstract We present an operational system for multi-sensor data fusion implemented at the Finnish Environment Institute. The system uses Ensemble Kalman filter and smoother algorithms, which are often used for probabilistic analysis of multi-sensor data. Uncertainty and spatial and temporal correlations present in the available observation data are accounted for to obtain accurate and realistic results. To test the data fusion system, daily chlorophyll-a concentration has been modelled across northern shoreline of Gulf of Finland over the period of August 1st – October 31st 2011. Chlorophyll-a data from routine monitoring stations, ferrybox measurements, and data derived from Medium Resolution Imaging Spectrometer (MERIS) instrument on board the ENVISAT satellite has been used as input. The data fusion system demonstrates the use of existing and well-known Ensemble Kalman filtering and smoothing methods for improving water quality monitoring programs and for ensuring compliance with ecological standards.
  • Tolonen, Kimmo T.; Karjalainen, Juha; Hämäläinen, Heikki; Nyholm, Kristiina; Rahkola-Sorsa, Minna; Cai, Yongjiu; Heino, Jani (Springer Link, 2020)
    Aquatic Ecology 54 3 (2020)
    Lake littoral environments are heterogeneous, and different organisms typically show specific responses to this environmental variation. We examined local environmental and spatial factors affecting lake littoral biodiversity and the structuring of assemblages of phytoplankton, zooplankton and macroinvertebrates within and among three basins of a large lake system. We explored congruence of species composition and species richness among the studied organism groups to evaluate their general indicator potential to represent spatial variation in other groups. We expected that effects of water chemistry on plankton assemblages were stronger than effects of habitat characteristics. In contrast, we anticipated stronger effects of habitat on macroinvertebrates due to their mainly benthic mode of life. We also expected that within-basin spatial effects would be strongest on macroinvertebrates and weakest on phytoplankton. We predicted weak congruence in assemblage composition and species richness among the organism groups. Phytoplankton assemblages were mainly structured by the shared effects of water chemistry and large-scale spatial factors. In contrast to our expectations, habitat effects were stronger than water chemistry effects on zooplankton assemblages. However, as expected, macroinvertebrate species composition and richness were mainly affected by habitat conditions. Among-group congruence was weak for assemblage composition and insignificant for richness. Albeit weak, congruence was strongest between phytoplankton and zooplankton assemblages, as we expected. In summary, our analyses do not support the idea of using a single organism group as a wholesale biodiversity indicator.
  • Lehtoranta, Virpi; Louhi, Pauliina (Elsevier Science, 2021)
    Environmental Science & Policy 124, 226-234
    Non-market values pose a challenge in decision making. In a contribution to the issue, the study assesses the potential positive impact on residents’ wellbeing of improving the ecological status of water bodies making up the Saarijärvi watercourse in Central Finland, a region with numerous Natura areas. The benefits provided by the aquatic environment and the factors affecting them were assessed using the contingent valuation method (CVM). A split-sample design made it possible to analyse expressed uncertainty with two payment vehicles: in one, the question of uncertainty was included in the willingness-to-pay (WTP) questions (multiple bounded discrete choice, MBDC); in the other, it was queried separately after the payment card (PC) question. Where respondents saw added value in Natura 2000 sites and received new information on water management, they experienced increased wellbeing from improved water quality. Perceived importance of sustainable hydropower and water regulation also figured in a desire to improve the ecological status of waters in the region. The results show that there is a noticeable positive WTP among residents (N = 473) for improved water status and that estimated WTP differs according to uncertainty: mean WTP every year per individual fell in the range EUR 29.70 to EUR 75.50. Improvement of water status and protection of Natura 2000 sites were found to be mutually reinforcing goals. Higher net social benefits could be realized if implementation of the applicable directives were more closely coupled to regional planning.
  • Lyytimäki, Jari; Assmuth, Timo (Springer Nature, 2015)
    GeoJournal 80, 113–127 (2015)
    Securing high-quality potable water is a key challenge for all societies. The question is not only about water availability and quality determined by hydrological, chemical, and biological factors, or technologies and monetary assets, but also about various cultural, social, and political factors that together constitute so-called hydro-social cycles. We focus on risk communication and management, in connection with the debates on planning and construction of an artificial groundwater recharge system in the Virttaankangas esker, aiming to provide potable water for the region of Turku, southwest Finland. Based on print media coverage, online debate, and comments on the environmental impact assessment report, we identify key themes and framings of risk debates and discuss which elements of the hydro-social cycle are prone to be highlighted or omitted. Our results show how different framings of risks and benefits are represented with regard to geography, time span, causative agents, impact types, those exposed, alternative management options, and uncertainties involved. Representations created both by traditional print media and new social media polarise the debate. The adoption of the concept of the hydro-social cycle in planning and communication processes may help in understanding and alleviating polarisation.
  • Wang, Huan; García Molinos, Jorge; Heino, Jani; Zhang, Huan; Zhang, Peiyu; Xu, Jun (Pergamon, 2021)
    Environment International 153 (2021), 106494
    Eutrophication is a major problem currently impacting many surface water ecosystems. Impacts of increased nutrient concentrations on biodiversity may differ between different scales, different organism groups, and different trophic states. Surveys at different spatial scales have suggested that biodiversity of different taxa may exhibit significant cross-taxon congruence. In our study, we examined the diversity of zooplankton and zoobenthos across 261 lakes in the Lake Taihu watershed, an area that is undergoing a severe eutrophication process. We tested the cross-taxon congruence in species richness and Shannon-Wiener diversity between zooplankton and zoobenthos along a nutrient gradient across the lakes. Our findings were consistent with the intermediate disturbance hypothesis, considering nutrient input as the disturbance. Also, we found significant cross-taxon congruence between zooplankton and zoobenthos diversities. Our results confirmed that excess nutrient levels resulted in diversity loss and community simplification. Zoobenthos were more sensitive to nutrient increases compared with zooplankton, which decreased cross-taxon congruence because these organism groups did not respond similarly to the anthropogenic disturbance.
  • Jyväsjärvi, Jussi; Lehosmaa, Kaisa; Aroviita, Jukka; Turunen, Jarno; Rajakallio, Maria; Marttila, Hannu; Tolkkinen, Mikko; Mykrä, Heikki; Muotka, Timo (Elsevier, 2021)
    Ecological Indicators 121 (2021), 106986
    Degradation of freshwater ecosystems requires efficient tools for assessing the ecological status of freshwater biota and identifying potential cause(s) for their biological degradation. While diatoms and macroinvertebrates are widely used in stream bioassessment, the potential utility of microbial communities has not been fully harnessed. Using data from 113 Finnish streams, we assessed the performance of aquatic leaf-associated fungal decomposers, relative to benthic macroinvertebrates and diatoms, in modelling-based bioassessment. We built multi-taxon niche -type predictive models for fungal assemblages by using genus-based and sequence-based identification levels. We then compared the models’ precision and accuracy in the prediction of reference conditions (number of native taxa) to corresponding models for macroinvertebrates and diatoms. Genus-based fungal model nearly equalled the accuracy and precision of our best model (macroinvertebrates), whereas the sequence-based model was less accurate and tended to overestimate the number of taxa. However, when the models were applied to streams disturbed by anthropogenic stressors (nutrient enrichment, sedimentation and acidification), alone or in combination, the sequence-based fungal assemblages were more sensitive than other taxonomic groups, especially when multiple stressors were present. Microbial leaf decomposition rates were elevated in sediment-stressed streams whereas decomposition attributable to leaf-shredding macroinvertebrates was accelerated by nutrients and decelerated by sedimentation. Comparison of leaf decomposition results to model output suggested that leaf decomposition rates do not detect effectively the presence of multiple simultaneous disturbances. The rapid development of global microbial database may soon enable species-level identification of leaf-associated fungi, facilitating a more precise and accurate modelling of reference conditions in streams using fungal communities. This development, combined with the sensitivity of aquatic fungi in detecting the presence of multiple human disturbances, makes leaf-associated fungal assemblages an indispensable addition in a stream ecologist’s toolbox.
  • Popin, Rafael Vicentini; Delbaje, Endrews; de Abreu, Vinicius Augusto Carvalho; Rigonato, Janaina; Dorr, Felipe Augusto; Pinto, Ernani; Sivonen, Kaarina; Fiore, Marli Fatima (2020)
    The bloom-forming cyanobacterium Nodularia spumigena CENA596 encodes the biosynthetic gene clusters (BGCs) of the known natural products nodularins, spumigins, anabaenopeptins/namalides, aeruginosins, mycosporin-like amino acids, and scytonemin, along with the terpenoid geosmin. Targeted metabolomics confirmed the production of these metabolic compounds, except for the alkaloid scytonemin. Genome mining of N. spumigena CENA596 and its three closely related Nodularia strains-two planktonic strains from the Baltic Sea and one benthic strain from Japanese marine sediment-revealed that the number of BGCs in planktonic strains was higher than in benthic one. Geosmin-a volatile compound with unpleasant taste and odor-was unique to the Brazilian strain CENA596. Automatic annotation of the genomes using subsystems technology revealed a related number of coding sequences and functional roles. Orthologs from the Nodularia genomes are involved in the primary and secondary metabolisms. Phylogenomic analysis of N. spumigena CENA596 based on 120 conserved protein sequences positioned this strain close to the Baltic Nodularia. Phylogeny of the 16S rRNA genes separated the Brazilian CENA596 strain from those of the Baltic Sea, despite their high sequence identities (99% identity, 100% coverage). The comparative analysis among planktic Nodularia strains showed that their genomes were considerably similar despite their geographically distant origin.
  • Gonzales-Inca, Carlos; Calle, Mikel; Croghan, Danny; Torabi Haghighi, Ali; Marttila, Hannu; Silander, Jari; Alho, Petteri (MDPI AG, 2022)
    This paper reviews the current GeoAI and machine learning applications in hydrological and hydraulic modeling, hydrological optimization problems, water quality modeling, and fluvial geomorphic and morphodynamic mapping. GeoAI effectively harnesses the vast amount of spatial and non-spatial data collected with the new automatic technologies. The fast development of GeoAI provides multiple methods and techniques, although it also makes comparisons between different methods challenging. Overall, selecting a particular GeoAI method depends on the application’s objective, data availability, and user expertise. GeoAI has shown advantages in non-linear modeling, computational efficiency, integration of multiple data sources, high accurate prediction capability, and the unraveling of new hydrological patterns and processes. A major drawback in most GeoAI models is the adequate model setting and low physical interpretability, explainability, and model generalization. The most recent research on hydrological GeoAI has focused on integrating the physical-based models’ principles with the GeoAI methods and on the progress towards autonomous prediction and forecasting systems.
  • Janssen, Annette B. G.; Janse, Jan H.; Beusen, Arthur H. W.; Chang, Manqi; Harrison, John A.; Huttunen, Inese; Kong, Xiangzhen; Rost, Jasmijn; Teurlincx, Sven; Troost, Tineke A.; van Wijk, Dianneke; Mooij, Wolf M. (Elsevier, 2019)
    Current Opinion in Environmental Sustainability 36 (2019), 1-10
    Algal blooms increasingly threaten lake and reservoir water quality at the global scale, caused by ongoing climate change and nutrient loading. To anticipate these algal blooms, models to project future algal blooms worldwide are required. Here we present the state-of-the-art in algal projection modelling and explore the requirements of an ideal algal projection model. Based on this, we identify current challenges and opportunities for such model development. Since most building blocks are present, we foresee that algal projection models for any lake on earth can be developed in the near future. Finally, we think that algal bloom projection models at a global scale will provide a valuable contribution to global policymaking, in particular with respect to SDG 6 (clean water and sanitation).
  • Peltomaa, Elina; Könönen, Mari; Palviainen, Marjo; Laurén, Annamari (Ari); Zhu, Xudan; Kinnunen, Niko; Aaltonen, Heidi; Ojala, Anne; Pumpanen, Jukka (2022)
    Boreal peatlands are vast carbon (C) stores but also major sources of dissolved organic C (DOC) and nutrients to surface waters. Drainage and forest harvesting accelerates DOC leaching. Continuous cover forestry (CCF) is considered to cause fewer adverse environmental effects. Yet, the effects of CCF on DOC processes are unrecognised. We study DOC production and quality in unharvested, CCF, and clear-cut drained peatland forests and in a non-forested alluvial sedge fen. Parallel replicate peat columns with ground vegetation are collected from the uppermost 50 cm at each site, and the water table (WT) is set to -20 or -40 cm depths on the columns. During the eight-month ex situ incubation experiment, the soil water samples are extracted monthly or bi-monthly. The samples are incubated at 15 degrees C for multiple 72 h incubation cycles to study pore water quality and biodegradation of DOC. The CO2 production occurs during the first three days. The DOC concentrations and the CO2 release per volume of water are significantly lower in the sedge fen than in the drained peatland forests. The WT has a negligible effect on DOC concentrations and no effect on DOC quality, but the higher WT has generally higher CO2 production per DOC than the lower WT. The results suggest that peat in the drained peatlands is not vulnerable to changes per se but that forest management alters biotic and abiotic factors that control the production, transport, and biodegradation of DOC.