Browsing by Subject "zoobenthos"

Sort by: Order: Results:

Now showing items 1-15 of 15
  • García-Girón, Jorge; Heino, Jani; García-Criado, Francisco; Fernández-Aláez, Camino; Alahuhta, Janne (Wiley Online Library, 2020)
    Ecography 43 8 (2020)
    Biotic interactions are fundamental drivers governing biodiversity locally, yet their effects on geographical variation in community composition (i.e. incidence-based) and community structure (i.e. abundance-based) at regional scales remain controversial. Ecologists have only recently started to integrate different types of biotic interactions into community assembly in a spatial context, a theme that merits further empirical quantification. Here, we applied partial correlation networks to infer the strength of spatial dependencies between pairs of organismal groups and mapped the imprints of biotic interactions on the assembly of pond metacommunities. To do this, we used a comprehensive empirical dataset from Mediterranean landscapes and adopted the perspective that community assembly is best represented as a network of interacting organismal groups. Our results revealed that the co-variation among the beta diversities of multiple organismal groups is primarily driven by biotic interactions and, to a lesser extent, by the abiotic environment. These results suggest that ignoring biotic interactions may undermine our understanding of assembly mechanisms in spatially extensive areas and decrease the accuracy and performance of predictive models. We further found strong spatial dependencies in our analyses which can be interpreted as functional relationships among several pairs of organismal groups (e.g. macrophytes–macroinvertebrates, fish–zooplankton). Perhaps more importantly, our results support the notion that biotic interactions make crucial contributions to the species sorting paradigm of metacommunity theory and raise the question of whether these biologically-driven signals have been equally underappreciated in other aquatic and terrestrial ecosystems. Although more research is still required to empirically capture the importance of biotic interactions across ecosystems and at different spatial resolutions and extents, our findings may allow decision makers to better foresee the main consequences of human-driven impacts on inland waters, particularly those associated with the addition or removal of key species.
  • Näkki, Pinja; Setälä, Outi; Lehtiniemi, Maiju (2019)
    Marine Pollution Bulletin 119 (1): 255-261
    Microplastics (MPs) are observed to be present on the seafloor ranging from coastal areas to deep seas. Because bioturbation alters the distribution of natural particles on inhabited soft bottoms, a mesocosm experiment with common benthic invertebrates was conducted to study their effect on the distribution of secondary MPs (different-sized pieces of fishing line < 1 mm). During the study period of three weeks, the benthic community increased MP concentration in the depth of 1.7-5.1 cm in the sediment. The experiment revealed a clear vertical gradient in MP distribution with their abundance being highest in the uppermost parts of the sediment and decreasing with depth. The Baltic clam Macoma balthica was the only study animal that ingested MPs. This study highlights the need to further examine the vertical distribution of MPs in natural sediments to reliably assess their abundance on the seafloor as well as their potential impacts on benthic communities.
  • Rajakallio, Maria; Jyväsjärvi, Jussi; Muotka, Timo; Aroviita, Jukka (Blackwell, 2021)
    Journal of Applied Ecology 58: 7, 1523-1532
    1. Growing bioeconomy is increasing the pressure to clear-cut drained peatland forests. Yet, the cumulative effects of peatland drainage and clear-cutting on the biodiversity of recipient freshwater ecosystems are largely unknown. 2. We studied the isolated and combined effects of peatland drainage and clear-cutting on stream macroinvertebrate communities. We further explored whether the impact of these forestry-driven catchment alterations to benthic invertebrates is related to stream size. We quantified the impact on invertebrate biodiversity by comparing communities in forestry-impacted streams to expected communities modelled with a multi-taxon niche model. 3. The impact of clear-cutting of drained peatland forests exceeded the sum of the independent effects of drainage and clear-cutting, indicating a synergistic interaction between the two disturbances in small streams. Peatland drainage reduced benthic biodiversity in both small and large streams, whereas clear-cutting did the same only in small streams. Small headwater streams were more sensitive to forestry impacts than the larger downstream sites. 4. We found 11 taxa (out of 25 modelled) to respond to forestry disturbances. These taxa were mainly different from those previously reported as sensitive to forestry-driven alterations, indicating the context dependence of taxonomic responses to forestry. In contrast, most of the functional traits previously identified as responsive to agricultural sedimentation also responded to forestry pressures. In particular, taxa that live temporarily in hyporheic habitats, move by crawling, disperse actively in water, live longer than 1 year, use eggs as resistance form and obtain their food by scraping became less abundant than expected, particularly in streams impacted by both drainage and clear-cutting. 5. Synthesis and applications. Drained peatland forests in boreal areas are reaching maturity and will soon be harvested. Clear-cutting of these forests incurs multiple environmental hazards but previous studies have focused on terrestrial ecosystems. Our results show that the combined impacts of peatland drainage and clear-cutting may extend across ecosystem boundaries and cause significant biodiversity loss in recipient freshwater ecosystems. This information supports a paradigm shift in boreal forest management, whereby continuous-cover forestry based on partial harvest may provide the most sustainable approach to peatland forestry.
  • Rousi, Heta; Korpinen, Samuli; Bonsdorff, Erik (Frontiers Media, 2019)
    Frontiers in Marine Science
    We studied the spatio-temporal impacts of physical and chemical environmental variables (depth, sediment type, salinity, temperature, oxygen, total phosphorus, and total nitrogen) on soft-sediment zoobenthos in the open coastal Gulf of Finland during 2001–2015. The study included 55 sampling-stations covering the east-west gradient of the Finnish coastal zone. The chosen environmental variables significantly influenced the distribution of the species in space and over time. Some zoobenthic taxa formed assemblages with each other, occurring in similar environmental conditions, while Gammarus spp. and Chironomidae clearly differed from other taxa in regards to ecological requirements. We showed the critical influence of oxygen (normoxia, hypoxia, anoxia) on individual species, some better adapted to low oxygen conditions (e.g., Chironomidae) than others (e.g., Monoporeia affinis). The nutrient concentrations in the surface sediment also significantly affected the benthic assemblage patterns. The number of species in space and time increased with increasing oxygen concentrations. This study clearly shows that in order to maintain healthy marine communities, it is essential to counteract excess nutrient inputs and their indirect effects on sufficient O2 conditions for the benthic habitats.
  • Li, Zhengfei; Wang, Jun; Liu, Zhenyuan; Meng, Xingliang; Heino, Jani; Jiang, Xuankong; Xiong, Xiong; Jiang, Xiaoming; Xie, Zhicai (2019)
    Science of the Total Environment 655:1288-1300
    Examining the relative contribution of local environmental stressors and regional factors in structuring biological communities is essential for biodiversity conservation and environmental assessment, yet their relative roles for different community characterizations remain elusive. Here, we examined the responses of taxonomic and functional structures of stream macroinvertebrate communities to local and regional factors across a human-induced environmental gradient in the Han River Basin, one subtropical biodiversity hotspot in China. Our objectives were: 1) to examine the responses of traditional taxonomic measures and functional traits to anthropogenic disturbances; 2) to compare the relative importance of environmental versus spatial variables and catchment-scale versus reach-scale variables for the two community characterizations. We found that both species and trait compositions performed well in differentiating anthropogenic disturbances, indicating that both taxonomic and functional structures of macroinvertebrate communities were strongly altered by human activities. Particularly, some traits related to life history (e.g., voltinism), resilience and resistance (e.g., adult flying ability) are well suited for predicting changes of communities towards anthropogenic disturbances owing to their mechanistic relationship with environmental gradients. We found that environmental variables played more important roles than spatial effects in structuring both taxonomic and functional facets of macroinvertebrate communities. Environmental filtering was more important in determining functional than taxonomic structure, and the opposite was true for spatial effects. In terms of environmental variables, catchment land-uses played the primary role in determining taxonomic composition, whereas reach-scale variables related to local habitat heterogeneity were more influential for functional structure. Our study highlights the importance of employing metacommunity perspectives and different community characterizations in both theoretical and applied research. For stream bioassessment and management, we argue that the combination of taxonomic and functional characterizations of community should be implemented, as different facets of biological communities responded to different types of anthropogenic disturbances.
  • Li, Zhengfei; Wang, Jun; Meng, Xingliang; Heino, Jani; Sun, Meiqin; Jiang, Xiaoming; Xie, Zhicai (2019)
    Freshwater Science 38 (1): 170-182
    Disentangling the effects of dispersal mode on the environmental and spatial processes structuring biological assemblages is essential to understanding the mechanisms of species coexistence and maintenance. Here, we use field investigations to link dispersal mode with environmental and spatial processes that control stream macroinvertebrate assemblage structure across the Yarlung Zangbo Grand Canyon of Tibet (Tibetan Plateau). We sampled macroinvertebrates in streams that occur in 4 distinct regions. Each of these regions has a steep elevational gradient but different altitude ranges, climate types, and water replenishment sources. We classified macroinvertebrate taxa into passive and active dispersal mode groups to test whether macroinvertebrates with different dispersal modes responded differently to environmental and spatial processes. Our results showed that the assemblage structure of active dispersal groups was more strongly determined by environmental variables (habitat filtering/species sorting) than spatial factors both within and across regions. In contrast, the structure of passive dispersers was more strongly associated with spatial factors than environmental filtering in the entire study area and within lower canyon regions. However, spatial effects were not important for either type of dispersal group in the upper canyon regions, especially in the region with glacier-fed streams, indicating the predominance of species sorting processes in these harsh environments. Furthermore, the spatial structuring of assemblages became stronger as habitat filtering declined, which indicates a reduction in species sorting processes in less harsh environments. Our findings demonstrate diverse responses of macroinvertebrate assemblages to environmental and spatial processes across this poorly-known highland river system, and imply that dispersal mode influences the underlying mechanisms of community variation.
  • Tolonen, Kimmo T.; Karjalainen, Juha; Hämäläinen, Heikki; Nyholm, Kristiina; Rahkola-Sorsa, Minna; Cai, Yongjiu; Heino, Jani (Springer Link, 2020)
    Aquatic Ecology 54 3 (2020)
    Lake littoral environments are heterogeneous, and different organisms typically show specific responses to this environmental variation. We examined local environmental and spatial factors affecting lake littoral biodiversity and the structuring of assemblages of phytoplankton, zooplankton and macroinvertebrates within and among three basins of a large lake system. We explored congruence of species composition and species richness among the studied organism groups to evaluate their general indicator potential to represent spatial variation in other groups. We expected that effects of water chemistry on plankton assemblages were stronger than effects of habitat characteristics. In contrast, we anticipated stronger effects of habitat on macroinvertebrates due to their mainly benthic mode of life. We also expected that within-basin spatial effects would be strongest on macroinvertebrates and weakest on phytoplankton. We predicted weak congruence in assemblage composition and species richness among the organism groups. Phytoplankton assemblages were mainly structured by the shared effects of water chemistry and large-scale spatial factors. In contrast to our expectations, habitat effects were stronger than water chemistry effects on zooplankton assemblages. However, as expected, macroinvertebrate species composition and richness were mainly affected by habitat conditions. Among-group congruence was weak for assemblage composition and insignificant for richness. Albeit weak, congruence was strongest between phytoplankton and zooplankton assemblages, as we expected. In summary, our analyses do not support the idea of using a single organism group as a wholesale biodiversity indicator.
  • Wang, Huan; García Molinos, Jorge; Heino, Jani; Zhang, Huan; Zhang, Peiyu; Xu, Jun (Pergamon, 2021)
    Environment International 153 (2021), 106494
    Eutrophication is a major problem currently impacting many surface water ecosystems. Impacts of increased nutrient concentrations on biodiversity may differ between different scales, different organism groups, and different trophic states. Surveys at different spatial scales have suggested that biodiversity of different taxa may exhibit significant cross-taxon congruence. In our study, we examined the diversity of zooplankton and zoobenthos across 261 lakes in the Lake Taihu watershed, an area that is undergoing a severe eutrophication process. We tested the cross-taxon congruence in species richness and Shannon-Wiener diversity between zooplankton and zoobenthos along a nutrient gradient across the lakes. Our findings were consistent with the intermediate disturbance hypothesis, considering nutrient input as the disturbance. Also, we found significant cross-taxon congruence between zooplankton and zoobenthos diversities. Our results confirmed that excess nutrient levels resulted in diversity loss and community simplification. Zoobenthos were more sensitive to nutrient increases compared with zooplankton, which decreased cross-taxon congruence because these organism groups did not respond similarly to the anthropogenic disturbance.
  • Jyväsjärvi, Jussi; Lehosmaa, Kaisa; Aroviita, Jukka; Turunen, Jarno; Rajakallio, Maria; Marttila, Hannu; Tolkkinen, Mikko; Mykrä, Heikki; Muotka, Timo (Elsevier, 2021)
    Ecological Indicators 121 (2021), 106986
    Degradation of freshwater ecosystems requires efficient tools for assessing the ecological status of freshwater biota and identifying potential cause(s) for their biological degradation. While diatoms and macroinvertebrates are widely used in stream bioassessment, the potential utility of microbial communities has not been fully harnessed. Using data from 113 Finnish streams, we assessed the performance of aquatic leaf-associated fungal decomposers, relative to benthic macroinvertebrates and diatoms, in modelling-based bioassessment. We built multi-taxon niche -type predictive models for fungal assemblages by using genus-based and sequence-based identification levels. We then compared the models’ precision and accuracy in the prediction of reference conditions (number of native taxa) to corresponding models for macroinvertebrates and diatoms. Genus-based fungal model nearly equalled the accuracy and precision of our best model (macroinvertebrates), whereas the sequence-based model was less accurate and tended to overestimate the number of taxa. However, when the models were applied to streams disturbed by anthropogenic stressors (nutrient enrichment, sedimentation and acidification), alone or in combination, the sequence-based fungal assemblages were more sensitive than other taxonomic groups, especially when multiple stressors were present. Microbial leaf decomposition rates were elevated in sediment-stressed streams whereas decomposition attributable to leaf-shredding macroinvertebrates was accelerated by nutrients and decelerated by sedimentation. Comparison of leaf decomposition results to model output suggested that leaf decomposition rates do not detect effectively the presence of multiple simultaneous disturbances. The rapid development of global microbial database may soon enable species-level identification of leaf-associated fungi, facilitating a more precise and accurate modelling of reference conditions in streams using fungal communities. This development, combined with the sensitivity of aquatic fungi in detecting the presence of multiple human disturbances, makes leaf-associated fungal assemblages an indispensable addition in a stream ecologist’s toolbox.
  • Truchy, Amélie; Sarremejane, Romain; Muotka, Timo; Mykrä, Heikki; Angeler, David G.; Lehosmaa, Kaisa; Huusko, Ari; Johnson, Richard K.; Sponseller, Ryan A.; McKie, Brendan G. (Wiley, 2020)
    Global Change Biology 26 6 (2020)
    Ongoing climate change is increasing the occurrence and intensity of drought episodes worldwide, including in boreal regions not previously regarded as drought prone, and where the impacts of drought remain poorly understood. Ecological connectivity is one factor that might influence community structure and ecosystem functioning post-drought, by facilitating the recovery of sensitive species via dispersal at both local (e.g. a nearby habitat patch) and regional (from other systems within the same region) scales. In an outdoor mesocosm experiment, we investigated how impacts of drought on boreal stream ecosystems are altered by the spatial arrangement of local habitat patches within stream channels, and variation in ecological connectivity with a regional species pool. We measured basal ecosystem processes underlying carbon and nutrient cycling: (a) algal biomass accrual; (b) microbial respiration; and (c) decomposition of organic matter, and sampled communities of aquatic fungi and benthic invertebrates. An 8-day drought event had strong impacts on both community structure and ecosystem functioning, including algal accrual, leaf decomposition and microbial respiration, with many of these impacts persisting even after water levels had been restored for 3.5 weeks. Enhanced connectivity with the regional species pool and increased aggregation of habitat patches also affected multiple response variables, especially those associated with microbes, and in some cases reduced the effects of drought to a small extent. This indicates that spatial processes might play a role in the resilience of communities and ecosystem functioning, given enough time. These effects were however insufficient to facilitate significant recovery in algal growth before seasonal dieback began in autumn. The limited resilience of ecosystem functioning in our experiment suggests that even short-term droughts can have extended consequences for stream ecosystems in the world's vast boreal region, and especially on the ecosystem processes and services mediated by algal biofilms.
  • Cai, Yongjiu; Zhang, You; Hu, Zhixin; Deng, Jianming; Qin, Boqiang; Yin, Hongbin; Wang, Xiaolong; Gong, Zhijun; Heino, Jani (2019)
    Ecological Indicators 103: 713-721
    Metacommunity theory emphasizes that local communities are jointly affected by environmental filtering and spatial processes. However, the roles of spatial processes are often given insufficient attention in bioassessment practices, which may bias the assessments of ecological status based on biotic metrics. Here, we quantified the relative importance and the seasonal stability of spatial processes, natural conditions and human-induced factors in structuring variation in different bioassessment metrics based on macroinvertebrate communities. Our study systems were two extensively sampled large and shallow lakes with strong nutrient gradients related to human disturbance. The roles of different drivers were examined for three kinds of indicators: general diversity, trait-based and taxonomic distinctness metrics, and their performance in characterizing human disturbance was evaluated. Overall, human-induced and spatial factors were all important in explaining variation in the three types of bioassessment metrics. Contrary to our expectations, however, we found that the importance of spatial processes on bioassessment metrics can be comparable to the effects of local environmental conditions at the within-lake scale. Furthermore, the results showed substantial seasonal variability in the relative roles of different drivers, which might be linked to life-cycle seasonality of macroinvertebrates. As expected, trait-based metrics generally were best associated with human-induced variables in both lakes, whereas general diversity and taxonomic distinctness metrics performed poorly. The low effectiveness of taxonomic distinctness metrics might due to low species richness associated with high nutrient levels. To conclude, our results suggest that bioassessment cannot exclusively rely on the idea of environmental filtering even if we focus on fine spatial scales. We hence strongly urge that spatial processes, natural drivers and temporal variability should be better considered in combination in the development and application of bioassessment approaches. In addition, taxonomic distinctness measures should be used with caution, especially for the ecosystems and organism groups typically characterized by low species richness.
  • Zhang, You; Cheng, Long; Li, Kuanyi; Zhang, Lu; Cai, Yongjiu; Wang, Xiaolong; Heino, Jani (2019)
    Limnology and Oceanography 64 (3): 1047-1058
    Eutrophication alters the trophic dynamics in lakes and may result in biotic homogenization. How nutrient enrichment drives patterns of taxonomic and functional (i.e., trait‐based) homogenization of macroinvertebrate assemblages at within‐lake (local) and among‐lake (regional) scales is, however, not well understood. Taxonomic and functional compositions of macroinvertebrate assemblages in 41 lakes of the middle and lower reaches of the Yangtze River and Huaihe River were analyzed at within‐lake and among‐lake scales. Our results indicated that there was a significant difference in macroinvertebrate assemblages among lakes under different trophic status, and that total phosphorus was the major environmental factor that regulated both taxonomic and functional beta diversity of macroinvertebrate assemblages. That the abundances of pollution‐tolerant species (e.g., Limnodrilus hoffmeisteri and Microchironomus tabarui) increased with trophic state contributed the most to among‐lake dissimilarity. Functional beta diversity was significantly positively correlated with taxonomic beta diversity, while functional beta diversity was on average lower than taxonomic beta diversity. A combination of univariate and multivariate techniques revealed that nutrient enrichment homogenized taxonomic and functional diversity of benthic macroinvertebrate assemblages in shallow lakes at within‐lake and among‐lake scales, and that there was an overall trend toward taxonomic homogenization that exceeded the trend of functional homogenization. Thus, taxonomic and functional compositions should be considered simultaneously to improve understanding of the response of aquatic communities to anthropogenic disturbance, as the loss and gain of species may be influenced by species‐specific features, and functional composition may exhibit a relatively high correspondence with changes in environmental conditions.
  • Benito, Xavier; Vilmi, Annika; Luethje, Melina; Carrevedo, Maria Laura; Lindholm, Marja; Fritz, Sherilyn C. (Frontiers Media S.A., 2020)
    Frontiers Ecology Evolution 8 (2020)
    High-elevation tropical lakes are excellent sentinels of global change impacts, such as climate warming, land-use change, and atmospheric deposition. These effects are often correlated with temporal and spatial beta diversity patterns, with some local communities contributing more than others, a phenomenon known as local contribution to beta diversity (LCBD) or ecological uniqueness. Microorganisms, such as diatoms, are considered whole-ecosystem indicators, but little is known about their sensitivity and specificity in beta diversity studies mostly because of the lack of large spatial and temporal datasets. To fill this gap, we used a tropical South American diatom database comprising modern (144 lakes) and paleolimnological (6 sediment cores) observations to quantify drivers of spatial and temporal beta diversity and evaluated implications for environmental change and regional biodiversity. We used methods of beta diversity partitioning (replacement and richness components) by determining contributions of local sites to these components (LCBDrepl and LCBDrich), and studied how they are related to environmental, geological, and historical human variables using Generalized Additive Models (GAM). Beta replacement time series were also analyzed with GAM to test whether there is widespread biotic homogenization across the tropical Andes. Modern lake ecological uniqueness was jointly explained by limnological (pH), climatic (mean annual precipitation), and historical human density. Local lake (conductivity) and regional geodiversity variables (terrain ruggedness, soil variability) were inversely correlated to replacement and richness components of LCBD, suggesting that not all lakes contributing to broad-scale diversity are targets for conservation actions. Over millennial time scales, decomposing temporal trends of beta diversity components showed different trajectories of lake diatom diversity as response of environmental change: i) increased hydroclimatic variability (as inferred by decreased temperature seasonality) mediating higher contribution of richness to local beta diversity patterns ca. 1000 years ago in Ecuador Andean lakes and ii) lake-specific temporal beta diversity trends for the last ca. 200 years, indicating that biotic homogenization is not widespread across the tropical Andes. Our approach for unifying diatom ecology, metacommunity, and paleolimnology can facilitate the understanding of future responses of tropical Andean lakes to global change impacts.
  • Blanka, Gál; Szivák, ldikó; Heino, Jani; Schmera, Dénes (2019)
    Ecological Indicators 104: 357-364
    Understanding the effects of urbanization on the diversity of freshwater macroinvertebrates is an important topic of biodiversity research and has direct conservation relevance. The absence of evidence-based systematic overviews on this topic motivated us to perform meta-analyses and to synthetize the present state of knowledge. We observed significant heterogeneity among individual case studies, reporting negative, neutral and positive effects. As expected, urbanization had an overall negative effect on the diversity of freshwater macroinvertebrates. These results are based mainly on the study of lotic (stream and river) ecosystems because there are insufficient data available for lentic (pond and lake) ecosystems. Compared to individual case studies, the present review reports an evidence-based synthesis for the first time. We identified knowledge gaps regarding case studies reporting the effects of urbanization on pond and lake ecosystems, case studies examining the phylogenetic and functional facets of biodiversity, as well case studies investigating the effect of urbanization on the beta diversity component of macroinvertebrate communities. The identification of these knowledge gaps allowed us to make recommendations for future research: (1) report results on specific taxonomic groups and not only the entire macroinvertebrate community, (2) study the impacts of urbanization on macroinvertebrate diversity in different habitat types and understudied continents, (3) focus on the functional and phylogenetic facets of diversity and (4) examine community differentiation (e.g. beta diversity) in urban freshwater ecosystems. Our results also suggested that the analysis of diversity- environment relationships is crucial for developing macroinvertebrate indicators especially in the increasingly urbanized world.
  • Vilmi, Annika; Karjalainen, Satu M.; Wang, Jianjun; Heino, Jani (2019)
    Journal of Biogeography 46 (7): 1419-1428
    Aim To discover how biological traits, ecological preferences and taxonomic relatedness are associated with occupancy and abundance of diatom species across lakes and streams. Location Finland. Taxon Diatoms. Methods We studied 288 diatom species from 492 stream sites and 230 diatom species from 290 lake sites. For each species, we calculated logit-transformed regional occupancy and log-transformed mean local abundance, and further determined biological traits, ecological preferences and taxonomic levels for each species. Boosted regression tree (BRT) analysis was used to reveal the linear and nonlinear associations of biological, ecological and taxonomic predictors with occupancy or abundance of lake and stream diatoms. Results There were strong and positive interspecific occupancy–abundance relationships across both lakes and streams. The BRT models explained more deviances in variation in occupancy and abundance and their relationship for lakes than streams. Biological traits, especially cell size, but also life-form and guild, were the strongest predictors of diatom occupancy and abundance in lakes and streams when controlling for ecological preferences and taxonomic relatedness. Main conclusions In general, biological traits were the strongest predictors of occupancy and abundance in both freshwater systems. Species with similar biological traits thus tended to show similar occupancies and abundances. As indicated by lower explained deviances, occupancy and abundance in streams seemed to be more complexly structured than in lakes, suggesting that these two freshwater system types differ in the formation of biodiversity patterns. This difference may be related to the differences in hydrological connectedness between lakes and streams. Understanding how variations in species’ occupancy and abundance are formed across various waterbodies is important for meaningful biodiversity conservation.