Browsing by Subject "zoogeography"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Lohi, Saska (Helsingin yliopisto, 2015)
    Bats can act as potential vectors for various zoonotic diseases and other pathogens. Therefore their interactions with people should be examined to mitigate potential risks. Bats are small flying mammals and hide in small crevices during daylight hours, making them difficult to observe. Consequently, they have a capacity to “hitchhike” on ships to be dispersed over large distances. This study focused on anthropogenic unintentional bat translocations, i.e. hitchhiking bats. The study area is the Great Lakes region in North America. Using a web-based questionnaire survey, I asked the public about the frequency of bat-human encounters on ships, their nature, and perceived risks and incidents. I found that bats are commonly seen by people working on ships at the Great Lakes. Bats do not cause trouble other than scaring people. Based on photographic evidence, at least one bat was seen on a ship outside of its native range. Therefore ships might act as vectors, helping bats to disperse to new areas. This might provide pathways for pathogens to spread along, from bats to bats or from bats to humans. The risks related to hitchhiking bats seem to be rather limited. Rabies risk is the most obvious, but no cases of people getting rabies infection from hitchhiking bats were acknowledged. The possibility of ships translocating bats infected with Pseudogymnoascus destructans remains unknown. This study demonstrates how by engaging the public it is possible to gather novel scientific knowledge, and deepen our understanding about the relationship between man and wildlife. There are numerous hidden ways of how people interact with animal species. This study illuminates one of these ways, but many more are yet to be studied.
  • Wayland, Matthew T.; Vainio, Jouni K.; Gibson, David I.; Herniou, Elisabeth A.; Littlewood, D. Timothy J.; Väinölä, Risto (2015)
    The acanthocephalan genus Echinorhynchus Zoega in Müller, 1776 (sensu Yamaguti 1963) is a large and widespread group of parasites of teleost fish and malacostracan crustaceans, distributed from the Arctic to the Antarctic in habitats ranging from freshwaters to the deep-sea. A total of 52 species are currently recognised based on the conventional morphological species concept; however, the true diversity in the genus is masked by cryptic speciation. The considerable diversity within Echinorhynchus is an argument for subdividing the genus if monophyletic groups with supporting morphological characters can be identified. With this objective in mind, partial sequences of two genes with different rates of evolution and patterns of inheritance (nuclear 28S rRNA and mitochondrial cytochrome c oxidase subunit I) were used to infer the phylogenetic relationships among eight taxa of Echinorhynchus. These included representatives of each of three genus group taxa proposed in a controversial revision of the genus based on cement gland pattern, namely Echinorhynchus (sensu stricto), Metechinorhynchus Petrochenko, 1956 and Pseudoechinorhynchus Petrochenko, 1956. These groupings have previously been rejected by some authorities, because the diagnostic character is poorly defined; this study shows that Echinorhynchus (sensu stricto) and Metechinorhynchus are not natural, monophyletic groups. A revision of Echinorhynchus will require tandem molecular phylogenetic and morphological analyses of a larger sample of taxa, but this study has identified two morhological characters that might potentially be used to define new genera. The estimated phylogeny also provides insight into the zoogeographical history of Echinorhynchus spp. We postulate that the ancestral Echinorhynchus had a freshwater origin and the genus subsequently invaded the sea, probably several times. The freshwater taxa of the E. bothniensis Zdzitowiecki & Valtonen, 1987 clade may represent a reinvasion of freshwater by one or more ancestral marine species.