This is a so-called personal version (author's manuscript as accepted for publishing after the review process but prior to final layout and copyediting) of the article: Lindman, J 2014, 'Similarities of open data and open source: Impacts to business' Journal of Theoretical and Applied Electronic Commerce Research, vol 9, no. 3. 10.4067/S0718-18762014000300006 http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-18762014000300006&lng=en&nrm=iso&tlng=en

This version is stored in the Institutional Repository of the Hanken School of Economics, DHANKEN. Readers are asked to use the official publication in references.
Similarities of open data and open source: Impacts to business

Juho Lindman

Hanken School of Economics, FLO, Helsinki, Finland, juho.lindman@hanken.fi

Abstract

What are the similarities of open data and open source software when building a business? Despite their differences as phenomena (one is about application and one is about data), the two also have many similarities. Both for example share the idea that the transparency of the artifact enables contribution. Many developers of open data have experience with open source development. But do the companies that build their offerings on open data and open source have similarities, and what are these similarities? Drawing on fieldwork and interviews with software entrepreneurs and managers, this paper investigates these questions through an empirical focus on openness in business and clarifies the links between commercial organizations engaged with open source and open data. The article reports similarities in how the managers use the terms “open data” and “open source” to describe their business dynamic. These similarities are of importance to those who are interested in developing services that rely on open source or open data or who are interested in community management and legal and business issues or policy.

Keywords: Open Data, Open Source, Software Business
1 Introduction

Sometimes open data and open source are seen as the opposite of commercial service provisions because they both include the word "open." However, for open source, the openness of the software artifact mainly limits the traditional subscription sales revenue. Other revenue sources such as offering services, dual-licensing, and other well-documented strategies offer revenue potential for open source companies [7], [19].

For open data, there are two ways commercial companies can turn released data sets into (societal) public value: the release of datasets can 1) increase the transparency of governments and other institutions, fight corruption, and provide more participative new services and 2) create economic value, growth, jobs, and thus tax revenue by designing new services that governments do not offer and selling them [22], [30]. This paper focuses on the latter of these (economic value), and thus the main focus is not on individual developers, citizens, or developer communities, but rather on organizations driven by a profit motive. Measuring the impact of open policies in different levels of analyses [32] or open data in specific industries [3] is not always straightforward. Instead of the quantitative measurement of this impact, we explore the micro-level of how the managers and entrepreneurs perceive the transparency of open source and open data for their own businesses.

We assume that different meanings exist for the terms “open source” and “open data” among the people concerned. Open source diffusion in the past has held this kind of multifaceted appeal [28]. Open source was marketed as a solution that would solve many different problems inherent in organizational software production. When systems were then implemented, it was often the case that, despite their merits, open source had trouble meeting these expectations [28].

Any new invention goes through transformations as it is accepted into local organizational use [26]. Previous examples of such inventions include, for example, intranet and case tools [26]. First evangelists, academics, industry papers, tradeshows, and consultants push the term forward in society, then the popular press becomes interested in the term, and ultimately experts in organizations figure out what adopting the latest invention would mean to them and what the organizational impacts would be.

This article focuses on the final part of the process: when organizations activate and start to use these inventions. The goal is to study local meanings (as narrated by managers and entrepreneurs) in companies and compare open source with open data. A series of interviews was carried out with both open source and open data entrepreneurs to better understand the marketplace and the business models of these organizations.

The results show that open data proponents are also struggling with similar issues related to the terms and impacts of implementing open data. This information helps to show the similarities in the business logics and also has implications for innovation policy.

In addition to practical relevance to managers and entrepreneurs, we also hope to build links between mature open source research and the more-emerging field of open data research. We believe that cross-fertilizing these two traditions might create interesting new avenues.

2 Background

2.1 Definition of open source and open data

Computer science relies on the separation of data and applications [17]. Following this distinction, open source concerns the software license of applications, and open data refers to the access and reuse of data. Open source means a piece of software licensed under an OSI-approved license produced by virtually distributed communities that in most cases follow open source governance, practices, and tools and view themselves as open source communities.

Open data on the other hand means data that is “openly” available (on the Internet). It regards “the idea that certain data should be freely available to everyone to use and republish as they wish, without restrictions from copyright, patents or other mechanisms of control” (http://wikipedia.org). According to another commonly used definition, “content or data is open if anyone is free to use, reuse, and redistribute it—subject only, at most, to the requirement to attribute and/or share alike” (http://opendefinition.org).

Related concepts to open data are those of Public Service Information (PSI) and Open Government Data (OGD). Both of these terms concern data that is released by the government. Open data can instead be released by private actors. Furthermore, open data is released in a manner that not only aims to make reuse possible but welcomes the reuse of the data. This openness of data then enables developers to build services on the released datasets. Openness in this context can have three different elements: technical openness (interfaces and standards), legal
openness (concerning copyright, open licenses, and other issues), and commercial openness (that commercial usage is possible) [18].

2.2 Open source business

Voluntary collective action systems often include semipublic goods [24]. These have the benefits of being 1) non-excludable to the network partners and 2) jointly supplied, assuming that partners’ uses are non-competing [28]. These public goods can be for example open source or open data, which enables collective action and may create network effects.

Open source companies cannot sell software subscriptions because they are disseminating their software free of charge on the Internet. In a similar way, open data companies cannot sell data access if they are publishing the same data free on the Internet. From a strategic management perspective, mixing open and proprietary product strategies offers potential to many companies that sell software or consulting services [8]. Another way to enjoy the benefits of openness is to enhance internal processes by mimicking open source production [9], for example using Corporate Source [4] and Inner Source [16]. Sometimes open sourcing can also offer possibilities to externalize development tasks to an external workforce [34].

Open source in organizations is still an under-researched phenomenon when compared to, for example, developer motivation and community-driven projects [10]. Literature has identified several different ways to engage in open source [10] in addition to its use [29]. These include, for example, [29] using open source CASE tools within organizations, integrating OSS into software systems, participating in open source development, or providing the company’s products as open source.

Organizational OSS implementation is often constrained by different internal and external organizational pressures. OSS is leveraged using either open source business models [11], [22] or management strategies [25].

From a buyer perspective, open source offers potential to limit a situation called “vendor lock-in” [24]. To simplify, this is a situation in which earlier procurement decisions make the switching costs to another system so high that it is virtually impossible to change the vendor. The result of such a lock-in is a loss of control over the organization's own infrastructure to the IT-vendor. One of the key issues of progressive industrial policy from a citizen's oversight perspective would be to limit vendor locks to proprietary IT systems and vendors, because open source solutions would be available on the Internet.

2.3 Open data business

Open data provides economic growth through services based on open data sets [12]. The process of data transformation and business has been theorized in different ways [1], [2], [33]. One way is to focus on the general models to create a tenable offering on open data [21]: 1) freemium, 2) cross subsidy, and 3) network effects. In the freemium model, users are given certain data for free but are then charged for value-added service. The cross-subsidy model refers to price discrimination to certain groups to create services or gain a wider user base. Network effects means collaborating in a way that reduces costs or increases the service reach for some of the parties involved.

Another way to classify open data access is to divide services according to price mechanisms for open data [5], [6]: 1) premium, 2) freemium, 3) free. In this division, premium access is that which is charged a subscription fee; freemium access is limited in features, time, or size; and entirely free access is provided with either advertising or some method of cross-subsidizing.

Latif et al. [15] offered a model to describe the roles of entities in open data business: 1) raw data provider, 2) linked data developer, 3) data application provider, and 4) end user.

In more detail:

1. Raw Data Provider (or Data Provider) provides the data;
2. Linked Data Provider (or Data Service Provider) converts the raw data into linked data (in machine-readable format);
3. Data Application Provider (or Application Developer) has the expertise to develop applications, visualizations, and mash-ups on top of data and linked open data.
4. End Users are people who consume the data.
The business model concept can be used as a unit of analyses, and it uses a holistic approach to describe how companies carry out their business. Business models are centered around activities of the companies, and they help to explain how (economic) value is created and captured. However, business model research has not agreed on a single definition of the term “business model” [31].

We have elsewhere developed a conceptualization building on Latif [15] and Rajala’s [23] business model classification, and this conceptualization focuses on the different business models of the actors [27]. To simplify, value capture (of the small open-data companies) may follow three different paths as summarized below (Table 1).

Table 1: Service offering of open data companies [27].

<table>
<thead>
<tr>
<th>Revenue sources</th>
<th>Service offering</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Consultancy</td>
<td>Pre-publication analysis, project management, legal and privacy issues, user training, etc.</td>
</tr>
<tr>
<td>2) Conversion</td>
<td>Scraping, cleaning, adding semantic richness, combining with other data-sets, etc.</td>
</tr>
<tr>
<td>3) Application development</td>
<td>Designing the service, maintenance, etc.</td>
</tr>
</tbody>
</table>

These different stages of the data chain offer a variety of activities that may generate and capture economic value. Organizations may opt to use one or more of them. In addition, third-party organizations can build their offerings by implementing these processes in the data chain.

3 Methodology

We conducted a round of interpretative semi-structured interviews on open data with pioneering open data companies [13]. We focused on the meaning of and benefits offered by open data. Thus, the perspective of the interview was on how to use and develop services based on open data in commercial organizations.

As the field of open data is strongly developing, we chose the respondents using our existing connections, and we also asked those interviewed to recommend who else we should interview. All the respondents are from the same country (Finland), and their profiles are listed below (Table 2). We chose one respondent per organization. The research took place in the context of a research project on open data in organizations and in service development. This interview data was then compared to earlier collected data on open source entrepreneurs. The focus of analyses was on the similarities with open data and open source in a business setting (Table 2).

Table 2: Informants of the interviews

<table>
<thead>
<tr>
<th>Open data companies</th>
<th>Respondent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Project manager / Consultant</td>
</tr>
<tr>
<td>2</td>
<td>CEO / Consultant / Developer</td>
</tr>
<tr>
<td>3</td>
<td>Project manager / Developer</td>
</tr>
<tr>
<td>4</td>
<td>CEO / Consultant</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Open source companies</th>
<th>Respondent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CEO</td>
</tr>
</tbody>
</table>
The interviews were emailed back to the respondents for comments. All the respondents corroborated that they had been quoted correctly. We also made efforts to publish the results back to the respondents to get their input and to create a discussion as to whether the respondents agreed with the results.

Our analyses focused on how the respondents talked about the terms “open data” and “open source” [26] as well as their business benefits. First, we tabulated all the instances in which respondents mentioned “open source” and “open data.” In the second stage, we highlighted the business uses. The third part of the analyses was the comparison between open source and open data companies. The results are reported in what follows.

4 Findings

4.1 Similarities in business environment

The empirical research and analyses of the interviews showed several similarities in the business environment between the open data and open source companies as perceived by their managers. The similarities that emerged from the interviews were grouped together. The similarities formed the 1) competition, 2) customers, 3) revenue sources, and 4) community aspects following the work of Rajala [23]. Table 3 summarizes the similarities below.

<table>
<thead>
<tr>
<th>Open data business</th>
<th>Open source business</th>
<th>Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competition</td>
<td>Market is divided between small software companies and large software companies</td>
<td>Market is divided between small, medium, and large software companies</td>
</tr>
<tr>
<td>Customers</td>
<td>Emphasis on public organizations (for example, cultural institutions, municipalities). There is potential in the media industry</td>
<td>Emphasis on public organizations (for example, schools) as well as private companies</td>
</tr>
<tr>
<td>Revenue</td>
<td>Consultancy, conversions, application development, maintenance</td>
<td>Consultancy, application development, maintenance</td>
</tr>
<tr>
<td>Community</td>
<td>Often enjoy popularity and community support</td>
<td>Often enjoy popularity and community support</td>
</tr>
</tbody>
</table>

The competition environment for both types of companies in Finland is very similar. Many of the large software vendor competitors are the same for both open data and open source software companies (especially in the public sector market). In addition to the international and large players, there is a considerable number of small entrepreneurial software companies. Both open data and open source companies operate in markets characterized by high market polarization between small and large companies.

<table>
<thead>
<tr>
<th>collaborative learning tools</th>
<th>Developer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Small (3 persons) OSS company developing collaborative learning tools (same as above)</td>
<td>Developer</td>
</tr>
<tr>
<td>3 Small (1 person) OSS company developing relational database tools</td>
<td>Entrepreneur</td>
</tr>
<tr>
<td>4 Small (10 persons) OSS company developing web services</td>
<td>Developer</td>
</tr>
</tbody>
</table>

Similarities of open data and open source: Impacts to business

Juho Lindman
Large customers for both open source and open data organizations include public organizations. The customer base for both open data and open source companies is similar. However, open data companies are almost exclusively focusing on public organizations and cultural institutions while open source software companies also serve private sector customers to a large extent. The company cultures of the small software houses are very similar and function according to hacker style. Many of the developers have participated in the same programming courses or know each other some other way.

As their main product (software artifact or access to an open database access) cannot be sold directly, both rely on indirect revenue sources. The revenue sources for both types of companies are based on consultancy and building services on top of public goods. The open data revenue base was still developing, but it is growing at least according to respondent estimates. Companies also relied heavily upon community goodwill. Many open source tools are extensively used, and demands were made to keep the development processes as open as possible for both open data and open source software applications.

The philosophy of openness was discussed in the interviews, and both open source and open data companies were interested in building synergies between developer communities and included a certain level of “hacktivism.”

4.2 What is open: open source and open data?

This refers to how open open data is related to the degree of data openness (open to whom) and technical format (raw data, machine-readable data, and human-readable data). Some respondents regarded opening up datasets inside organizations as an open data approach while other respondents saw data as open only when it was released over the internet (as indicated by our earlier definitions).

The benefits of data openness were of course related to the scope of openness. If the data were opened inside an organization, the benefits were limited inside the companies. Examples include improved international communication or organizational performance. If data were opened over the Internet to anyone interested, respondents saw benefits on a national scale—for example, increased transparency or boosted economic development.

Different authors can thus open their data on different scopes depending on the goals they set for the release of the data publication. One option is to pursue open models while others see more scaled-down approaches to be more beneficial. There are also hybrid approaches to the question of openness, but ultimately this choice depended on organizational goals for publication.

4.3 Similarities in the business models

The companies had some differences in their business models. Table 4 summarizes some of the emerged similarities in the business models of these companies. The business model elements are [23] revenue, offering, resources, and relationships.

<table>
<thead>
<tr>
<th></th>
<th>Open data business</th>
<th>Open source business</th>
<th>Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue</td>
<td>Public funding, end-user (mobile) subscription, service sales</td>
<td>Dual-licensing, service sales</td>
<td>No revenue from the sales of the open artifact (software product or access to the open database)</td>
</tr>
<tr>
<td>Offering</td>
<td>Service, consultancy</td>
<td>Service, consultancy, software product</td>
<td>Main offering related to service built on public good. Another offering in most cases on consultancy and sales of expertise.</td>
</tr>
<tr>
<td>Resources</td>
<td>Application development, different skills related to data, sales, management</td>
<td>Application development, sales, management</td>
<td>Strong emphasis on application development</td>
</tr>
<tr>
<td>Relationships</td>
<td>Data publisher, development community</td>
<td>User community, development community, business ecosystem, and open source community</td>
<td>Strong ties to the development community</td>
</tr>
</tbody>
</table>
The main similarity in the revenue model was unsurprisingly that the companies could not gain subscription revenue from their main service (open source application or open database). Instead they relied on a number of different revenue sources such as public support, app sales, or, in the case of open source, dual-licensing.

A similar constraint was on offering, in which the offering was built on their main service: instead companies sold added-value services or consultancy related, in open data cases, to how to open the dataset and, in open source cases, related to their application.

All the companies were driven by application development, so their resources were in application development and maintenance, both for open data and open source. In the relationships, small companies had good relationships with the developer communities related to open source and open data. In addition, open data companies had good relations to the actor who was the original data publisher.

5 Discussion

5.1 Development community

The openness of the source code or data is often not the main concern for the user of a given service. Instead, usability and functionalities play a larger role. The expectation is that the developer has handled the issue of openness already during design. Often it does not really matter to most end users how the software is produced or what the origin of the data is, as long as they work as expected.

The situation is very different for developers and organizations that want to build their businesses on open source applications or open data stacks. They need to be convinced about the maturity, availability, long-term sustainability, maintenance, legal issues, and so on related to the open data or application. Often this certitude is linked to the developer communities in question and therefore requires organizations to build links with the developers they depend on. This is probably one of the reasons many small organizations were very “hactivist driven” and saw close links to the development community to be very important.

A specific issue related to open data was the origin of the data: if it was collected and released by a certain party, the organization that built services relying on those released datasets needed to be sure that the original publisher would continue to release up-to-date data stacks in a standard format (and normally without fee); otherwise the provision of the service would be discontinued, and the service providers would likely lose their development input and investment.

Open source companies depended heavily on their development communities, even though almost all of the code contributions were made by the company’s own workers. Organizations had developed different ways to manage their relationship with the community—for example, concerning communication, the handling of contributions, bug reports, etc. Open data companies in contrast were just developing similar kinds of mechanisms. Building a relation to the data publisher was also a key issue: many data publishers were making efforts to enlist community support and build feedback loops so that they could gain a better understanding of their downward data stream.

Different governmental actors have also been developing different kinds of industrial innovation contests to create small service companies and build new services (for example, in the areas of journalism, healthcare, energy, traffic, etc). These contests are seen as a good way to establish more actors in the field as well as to incentivize innovations. However, the long-term sustainability of these ventures was often considered problematic. New institutional arrangements were created to support these organizations after their seed-money had run out.

5.2 Legal issues

Although most of the discussions related to legal issues fall outside the scope of this study, there is a need to discuss some of their impacts briefly. Legal issues in general were of concern to many of the respondents. The open source situation was a bit clearer because of the wide use of and interest in open source licenses that govern what developers and users can and cannot do with the software. Attached to the source code, the internationally accepted open source licenses handle issues related to copyright and derivative works. Licenses ensure that the derivative works of the source branch (fork) stay open.

The situation for open data was not yet so mature. National legislation was more diverse in different countries—a consideration for those services that were expecting an international user base. Data publishers also often had different conditions for the release and maintenance of data. The legal relations were in many cases far from clear and also interwoven with the question of who should fund the openly available data maintenance and service development. The respondents agreed that when states provided material to increase transparency and citizen oversight the usage of governmental data was quite straightforward. However, when governments produced datasets that private actors used free of charge to create services and build their businesses, the situation was seen as much more volatile.
The accuracy of data is a key question. Risks related to publication of datasets that posed threats to individual privacy as well as national security were also mentioned in the interviews.

The open data marketplace can be threatened if some providers gain similar lock-ins, as was the case with open source. An example would be a service that combines data from open and proprietary data sources and thus by the control of the private data source is able to build switching costs for the buyer. In this situation, organizations risk finding themselves losing control over the development of services to their vendors. If this vendor-lock situation occurs for public organizations, it could result in a shift away from citizen control over the infrastructure required to carry out public service.

5.3 Links between open data and open source

Many respondents viewed that open data and open source had a lot in common. Respondents who were versed in technical details of course identified the core differences between developing open data and open application. On a process-level however, the respondents had similar views on the transparency of the process and that the end-results should likely be open in most of the cases. Many respondents also had doubts about how effective the current way to approach proprietary licenses and database rights was for new service development.

The link between open source and open data has been discussed widely in the open data community, concerning whether services built on open data should be licensed under open source license and what the relation is between open source licenses and the question of license and copyright regarding data.

Some have argued that in order for the open data services to be credible, there should be an option to have a look at the source code of the application that handles, controls, maintains, or visualizes the released datasets. Others argue that open source licenses would limit the commercial potential of open data too much, and thus services that are based on proprietary products can and should be allowed to benefit from open data stacks. This discussion is still ongoing.

6 Research implications

6.1 Impacts for practitioners

The main research impact is that despite its characteristics, open source research and practice can be used to understand open data and also for learning. This is especially true for issues related to community management and developer motivation that have been extensively studied related to open source. It is also worth stating the obvious: knowing open source development very well does not yet guarantee the necessary technical skills to be able to provide open data services or vice versa.

Open source literature has also delved quite deeply into the business of how to provide services when traditional software sales are not an option. The processes related to the production of the open service (open application or open dataset) are different. However, both share the ideology of the transparency of the development process. In addition, if we take the end-user perspective of the service, the process that creates the provided service is not the main concern. Instead, issues such as trustworthiness of the data, usability of the application, and the possible price of using the service are likely to be first on customers’ minds.

6.2 Impacts for companies

At the level of a company, the similarities offer possibilities for imitation as well as learning opportunities to avoid pitfalls. One of the most interesting opportunities is related to what are called hybrid-models in open source research. These models pertain to the ways in which companies can “close” or constrain a part of their offering to extract profit. One example model is that of dual-licensing, in which the company has two versions of the open source software: the open one and the closed one. Anyone can download the open one from the Internet or participate in its development, but the closed version is only available as traditional proprietary software.

There are several good reasons why companies want to buy a product even if it would be freely available. There reasons might include for example better support service, questions related to liability, or even the need to appear to be a good pro-open source company that takes care of its obligations. Similar models might be possible for open data.
Cross-fertilization of ideas related to open data and open source is another interesting avenue to explore further. One quite obvious business model is to build proprietary software on top of open data stacks. If this is the pursued business model, release of the software as open source will not gain traction in the company.

The “open ideology” many of the respondents shared was quite interesting. We are however a little hesitant to discuss the merits and impacts of that ideology based on our respondents alone. All of the respondents had invested personally either time or money in setting up their companies, so the open, activist-type spirit was not seen as something that is opposed to profit motives that the companies had.

6.3 Impacts for open data policy

Because of their similarity, open data proponents are able to draw useful lessons from open source regarding licensing issues, evasion of lock-ins, and the need to push towards public policies. In some sectors of the industry, interventions to public policy and procurement seem vital.

Open data enthusiasts might be able to benefit from open source experiences in several ways. In the past, sometimes open source was pushed without carefully assessing its impacts (especially in the public sector and consultancy). Sometimes it was unclear what open source in a short term could deliver and what it could not. This in turn led to a situation in which open source benefits were oversold and resulted in disappointment when the expectations for the new technology were not met. Now, open data proponents in organizations are facing similar challenges and could learn valuable lessons from the open source.

There is also a wider discussion concerning the production of public value in society. In this paper we focused on economic value creation and capture. However, production of public value also requires citizen oversight of the government industrial policy and commercial organizations. Open data can increase societal transparency in different ways and thus also lead to other good outcomes (for example, less corruption). However, we omit these discussions from this paper due to its limited scope.

7 Managerial implications

In what follows (Table 5), we have summarized the managerial implications of the article. They are listed as a form of guidelines that are backed by both earlier research and empirical analyses of the respondents. First, we have listed an issue already addressed by open source companies, and then we have formulated a guideline for open data companies. The elements are competition, customers, revenue, and community, as in Table 3.

<table>
<thead>
<tr>
<th>Open source experience</th>
<th>Open data take-away</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competition</td>
<td></td>
</tr>
<tr>
<td>The license fee is only a part of the total costs to the customer. Even free service does not guarantee long-term success against companies that sell their product.</td>
<td>Price competition might favor open artifact, but the company still needs to focus on marketing, prospecting, and customer relations.</td>
</tr>
<tr>
<td>Legal issues related to copyright and licensing were the focus and were also resolved early on.</td>
<td>Work on data licensing is still ongoing. Databases often fall outside copyright protection, but there are other legal issues to take into account: privacy, database rights, national security, etc.</td>
</tr>
<tr>
<td>Customers</td>
<td></td>
</tr>
<tr>
<td>The customers main concern in most cases was not the openness of the software product, but other issues (usability, price, availability of service, etc.).</td>
<td>The openness of the offering in itself is often not enough to sell the service. Other aspects of the service need to also be in place.</td>
</tr>
<tr>
<td>Revenue</td>
<td></td>
</tr>
<tr>
<td>Issues related to the business model and especially revenue source were critical for long-term business.</td>
<td>There are a limited number of tenable business models for companies whose offering is based on open stacks. The hybrid models might be worth pursuing.</td>
</tr>
<tr>
<td>Community</td>
<td></td>
</tr>
<tr>
<td>Development communities ensured long-term staying power</td>
<td>Community dynamics for open data may be different from open source. The data publisher’s strong role especially is a potential cause for friction.</td>
</tr>
<tr>
<td>“Managing” the community required know-how.</td>
<td>New capabilities are needed for the management of the open data development community.</td>
</tr>
<tr>
<td>“More eyeballs made the bugs shallow.”</td>
<td>External developers might be able to spot errors and problems in the data and service, but this requires feedback channels.</td>
</tr>
<tr>
<td>“Scratching an itch”—attracting voluntary contribution required perks. Offering financial resources was one way, but maybe not the best</td>
<td>Developers and customers are not lured in by openness alone. If there is an expectation of outside development help, perks, and processes</td>
</tr>
</tbody>
</table>

Table 5: Manager take-aways for open data business
The main managerial implications are related to building tenable business propositions in a situation characterized by offerings based on public goods. The price might be an issue that favors open data companies, but it is hardly the only factor that needs to be taken into account when developing and marketing a service. Other issues include usability, availability, maintenance, reputation, and issues such as marketing of the service. Legal issues constrain business opportunities but might also provide means to extract revenue.

The most prominent lessons might be in the area of developer motivation and "managing" a development community. New resources are needed, but they must also know the ethics and expectations for good behavior in a virtual development community. External contribution to the production of service is the ultimate target for open development, but this requires processes and feedback channels to work as expected.

8 Conclusion and limitations

There are several reasons why open data research has not followed open source research, but one of the main issues may be related to open source research focusing on community-driven development and individual developer motivation. From these perspectives, many research findings are not applicable to software entrepreneurs who want to make sense of their business environment.

We hope to have shown in this article how drawing on both research traditions may be useful to better understand open source and open data. Furthermore, combining the data and application development fields offers interesting avenues for future research. We have only scratched the surface with our small round of exploratory interviews, which mostly serves as a demonstration of the dynamics of the field.

The aim of this paper was to look for some similarities between open data and open source in the context of small software companies. The marketplaces they operate in as well as the offerings of these organizations were found to be similar. Both ecosystems are populated by small and networked software companies that build services on top of public goods. We have also listed the similarities in business models as well as discussed community management, legal issues, and open data policy. We have also provided a list of guidelines for open data managers who want to benefit from earlier open source research and practical experiences.

We have excluded different dataset-specific legal concerns from this paper. We agree that the different application areas and industries offer very different business environments that may require a more thorough review than was possible in the scope of this paper. The legal and policy environment concerning open data is currently changing in Finland as well as in other national contexts. We welcome research efforts that would compare differences in legislation as well as other parts of the business environment related to open data. We conclude that open data research can draw valuable lessons from open source research. These lessons can help practitioners and managers as well as the companies to build tenable businesses as indicated.

Websites List

Site 1: Wikipedia. Entry on “Open data”.
http://wikipedia.org

Site 2: Open Definition
http://opendefinition.org

References