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Abstract. Seasonality of demographic data has been of great interest. The seasonality 

depends mainly on climatic conditions, and the findings may vary from study to study. 

Commonly, the studies are based on monthly data. The population at risk plays a central role. 

For births or deaths over short periods, the population at risk is proportional to the lengths of 

the months. Hence, one must analyse the number of births (deaths) per day. If one studies the 

seasonality of multiple maternities, the population at risk is the total monthly number of 

confinements and the number of multiple maternities in a given month must be compared 

with the monthly number of all maternities. Consequently, one considers the monthly rates of 

multiple maternities, the monthly number of births is eliminated and one obtains an 

unaffected seasonality measure of the rates. In general, comparisons between the seasonality 

of different data sets presuppose standardization of the data to indices with common means, 

mainly 100.  

When seasonal models are applied, one must pay special attention to how well the applied 

model fits the data. If the goodness of fit is poor, non-significant models obtained can 

erroneously lead to statements that the seasonality is slight, although the observed seasonal 

fluctuations are marked. The estimated monthly models chosen are approximately orthogonal 

and they have little influence on the parameter estimates. Exact orthogonality should be 

obtained if the data are equidistant, that is, if the months are of equal length (e.g. 30 days), 

corresponding to 30 . Exactly equidistant data can be observed when circadian rhythms (24 

hours) are studied. In this study, we compare seasonal models with models with exact 

orthogonality. 
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Introduction 

Seasonality of population data has been of great interest in demographic studies. The 

seasonality depends mainly on climatic conditions, and hence, the findings may vary from 

study to study. Commonly, the studies are based on monthly data. The population at risk 

plays a central role. In a study of seasonal variation in the number of births or deaths, the 

population at risk is the product of the size of the population and the length of the month. 

Over short periods, the population can be assumed to be constant, and therefore, the 

population at risk is proportional to the lengths of the months. Hence, for studies of monthly 

birth and death data one must analyse the number of cases per day.  

If one studies the seasonal variation in multiple maternities or in the occurrence of an innate 

disease, the population at risk is the total number of confinements. Hence, the number of 

multiple maternities in a given month must be compared with the monthly number of all 

maternities. Similar attempts should also be applied when one studies stillbirths and the births 

of males (secondary sex ratio). Hence, one has to consider the monthly rates of multiple 

maternities, of stillbirths and of males. In the last case, one often considers secondary sex 

ratio as the rate of males (in %) among all births. If one considers monthly rates, the monthly 

number of birth data is eliminated and one obtains unaffected seasonality measures of the 

rates.  

The selection of a test for seasonality is not simple because the definition of seasonality is 

somewhat arbitrary. If one assumes seasonality as “non-flatness” throughout a year, 2  test 

(11 degrees of freedom for monthly data) is an option. But this test is weak since it does not 

consider the order of the months; it calculates the same test statistic for the data set with high 

(or low) values occurring in consecutive months and for data in separate months. 

Consequently, 2  tests are appropriate for testing of seasonality strength, but not for model 

testing ([1], [2]). 

Model fit is crucial, but which model is appropriate cannot be fixed a priori. Ultimately, test 

for seasonality might be integrated into test for clustering, but importantly, the clustering must 

be cyclic, with a one-year period. In demographic data, the sine curve has been a common 

feature of studies on seasonal variation (intra-annual fluctuations).   
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Multiple trigonometric regression models have proved useful for studying all kinds of 

periodic data, for they are flexible when the data differ from a simple sine curve. Diggle [3] 

discusses these models under the name of periodograms and states that they are good 

summary descriptions of time series showing a periodic pattern. In its simplest form, the 

trigonometric regression model is a sine curve and is comparable to the original and the 

generalized St. Leger models ([4] - [6]). When seasonal models are applied,  one must pay 

special attention to how well the applied model fits the data. A poor fit can erroneously result 

in a statement that the seasonality is slight, although the observed seasonal fluctuations are 

marked ([1], [7]). A good knowledge of the seasonal variation during normal years is of 

fundamental importance for studies of the effects of wars, famines, epidemics or similar 

privations ([6]), [8]). In this study, we investigate the rate of multiple maternities and compare 

seasonal (annual) models with circadian models. The rates of multiple maternities are the 

monthly number of multiple maternities related to the monthly number of all maternities, 

ignoring the (monthly) number of days. Similar comparisons of the seasonality of births and 

deaths cannot be performed because the study of births and deaths is based on cases per day. 

For such objects, a comparison between annual and circadian models cannot be performed.  

Methods and Materials 

Methods. In earlier papers, Fellman and Eriksson ([5], [6]) gave extensive presentations of 

seasonal models. They proposed alternative models, but their own studies were mainly based 

on multiple trigonometric regression models. In many situations, although there are marked 

seasonal variations, the simple sine curve model does not fit the data. For example, this is the 

case when the annual data show more than one marked peak, but data showing one peak and 

one trough may also differ considerably from the sine curve. Such cases could be when the 

peak or the trough is too larged or when the distance between them differs from one half year. 

Therefore, multiple trigonometric regression models are noteworthy alternatives.  

Following [6], we consider the multiple trigonometric regression model 
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where M is the number of pairs of trigonometric terms, mmm RA sin=  and mmm RB cos= . 

The error terms i  are assumed to be independent and homoscedastic. The parameters 

and ( 1,..., )m mA B m M=  and K  in model (1) are estimated by ordinary least squares 

(OLS) for the monthly data. With monthly data, one must introduce the restriction 5M . 

The basic parameters m  and the amplitudes mR  are estimated by the equations 
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The angle should be chosen so that sin( )m  and mA  (or alternatively cos( )m  and mB ) have 

the same sign. These restrictions give unique angles m . The angles m  and the amplitudes 

mR  are estimated from formulae (2) and (3).  

The simple regression model, 1M = , indicates the sinusoidal model. Good agreement with 

the sinusoidal model demands that the data pattern has one peak and one trough within a year.  

In this study, we pay more attention to the model fit and less to the estimates of the individual 

parameters. Hence, we accept only significant parameter estimates. We assume that the model 

is compact and optimal when all the non-significant parameter estimates are eliminated and 

all the remaining parameter estimates are significant.  

Fellman and Eriksson [6] observed that the design matrix of the regressor vectors is almost 

orthogonal, resulting in parameter estimates that are approximately uncorrelated and relatively 

independent of the number of trigonometric terms in the models. The regressors are cos( )t , 

sin( )t , cos(2 )t , sin(2 )t , cos(3 )t , sin(3 )t , cos(4 )t , sin(4 )t , cos(5 )t  and sin(5 )t , and their 

design matrix is  

 1 0.965 0.263 0.861 0.508 0.697 0.717 0.483 0.876 0.235 0.972  

 1 0.714 0.701 0.018 1.000 -0.687 0.726 -0.999 0.037 -0.739 -0.674  

 1 0.281 0.960 -0.842 0.539 -0.754 -0.656 0.418 -0.908 0.989 0.146  
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 1 -0.237 0.971 -0.887 -0.461 0.659 -0.752 0.574 0.819 -0.932 0.363  

 1 -0.692 0.722 -0.042 -0.999 0.750 0.661 -0.996 0.084 0.629 -0.777  
X = 1 -0.961 0.278 0.845 -0.534 -0.664 0.748 0.430 -0.903 -0.162 0.987 (4) 

 1 -0.971 -0.241 0.884 0.467 -0.746 -0.666 0.564 0.826 -0.348 -0.937  

 1 -0.714 -0.701 0.018 1.000 0.687 -0.726 -0.999 0.037 0.739 0.674  

 1 -0.267 -0.964 -0.858 0.514 0.724 0.690 0.472 -0.882 -0.976 -0.220  

 1 0.252 -0.968 -0.873 -0.488 -0.692 0.722 0.524 0.852 0.956 -0.292  

 1 0.703 -0.711 -0.012 -1.000 -0.720 -0.694 -1.000 0.024 -0.686 0.728  

 1 0.965 -0.263 0.861 -0.508 0.697 -0.717 0.483 -0.876 0.235 -0.972  
 

This model is termed the annual model. The scalar product shows the estimators are almost 

orthogonal, as can be seen in the information matrix M, where the diagonal elements are 12 

and approximately 6 and the off-diagonal elements are close to zero. 

 12.000 0.038 0.047 -0.025 0.038 -0.049 0.052 -0.047 -0.016 -0.057 -0.003  

 0.038 5.987 0.019 -0.006 0.050 -0.036 0.011 -0.053 0.024 -0.024 -0.011  

 0.047 0.019 6.013 0.002 0.044 -0.027 0.011 -0.027 0.004 0.005 -0.023  

 -0.025 -0.006 0.002 5.976 -0.008 -0.010 0.022 -0.013 0.016 -0.062 0.028  

 0.038 0.050 0.044 -0.008 6.024 -0.025 0.048 -0.022 -0.012 -0.024 0.013  
M  = -0.049 -0.036 -0.027 -0.010 -0.025 6.000 -0.003 -0.018 0.026 -0.052 0.037 (5) 

 0.052 0.011 0.011 0.022 0.048 -0.003 6.000 -0.022 0.056 -0.001 0.027  

 -0.047 -0.053 -0.027 -0.013 -0.022 -0.018 -0.022 5.961 0.018 -0.060 -0.045  

 -0.016 0.024 0.004 0.016 -0.012 0.026 0.056 0.018 6.039 -0.092 0.098  

 -0.057 -0.024 0.005 -0.062 -0.024 -0.052 -0.001 -0.060 -0.092 5.929 -0.085  

 -0.003 -0.011 -0.023 0.028 0.013 0.037 0.027 -0.045 0.098 -0.085 6.071  

Consequently, the model chosen has little influence on the parameter estimates. On the other 

hand, the error variances of the estimates are based on the unexplained sum of squares and, 

accordingly, parameter tests are affected by the model chosen. Furthermore, we assume in this 

study that the error terms are independent and homoscedastic. If this is not the case, the 

estimates obtained, although unbiased and consistent, will not be efficient. When the data are 

based on a large number of observations, the monthly rates can be assumed to be 

asymptotically normal. The whole model can then be tested by the F test and the individual 

parameters by t tests ([5], [6]). The goodness of fit of the regression model can also be 

analysed with the coefficients of determination ( R2  or R 2 ). Only if there is good agreement 

between the data and the model will the model-based tests detect the seasonal variation.  

Exact orthogonality should be obtained if the data are equidistant, that is, if the months are of 

equal length (e.g. 30 days), hence corresponding to 30 . Exactly equidistant data can be 

observed when circadian rhythms (24 hours) are studied. If one splits the day into 12 parts 
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(i.e. two-hour periods), the regression model can be compared with the annual trigonometric 

regression model given above. This model is named the circadian model. Now the design 

matrix is  
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 1 0.966 0.259 0.866 0.500 0.707 0.707 0.500 0.866 0.259 0.966  

 1 0.707 0.707 0.000 1.000 -0.707 0.707 -1.000 0.000 -0.707 -0.707  

 1 0.259 0.966 -0.866 0.500 -0.707 -0.707 0.500 -0.866 0.966 0.259  

 1 -0.259 0.966 -0.866 -0.500 0.707 -0.707 0.500 0.866 -0.966 0.259  

 1 -0.707 0.707 0.000 -1.000 0.707 0.707 -1.000 0.000 0.707 -0.707  
X= 1 -0.966 0.259 0.866 -0.500 -0.707 0.707 0.500 -0.866 -0.259 0.966 (6) 

 1 -0.966 -0.259 0.866 0.500 -0.707 -0.707 0.500 0.866 -0.259 -0.966  

 1 -0.707 -0.707 0.000 1.000 0.707 -0.707 -1.000 0.000 0.707 0.707  

 1 -0.259 -0.966 -0.866 0.500 0.707 0.707 0.500 -0.866 -0.966 -0.259  

 1 0.259 -0.966 -0.866 -0.500 -0.707 0.707 0.500 0.866 0.966 -0.259  

 1 0.707 -0.707 0.000 -1.000 -0.707 -0.707 -1.000 0.000 -0.707 0.707  

 1 0.966 -0.259 0.866 -0.500 0.707 -0.707 0.500 -0.866 0.259 -0.966  

and the orthogonality can be seen in the information matrix 

 12.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  
 0.000 6.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  
 0.000 0.000 6.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  
 0.000 0.000 0.000 6.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  
 0.000 0.000 0.000 0.000 6.000 0.000 0.000 0.000 0.000 0.000 0.000  
N = 0.000 0.000 0.000 0.000 0.000 6.000 0.000 0.000 0.000 0.000 0.000 (7) 

 0.000 0.000 0.000 0.000 0.000 0.000 6.000 0.000 0.000 0.000 0.000  
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 6.000 0.000 0.000 0.000  
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 6.000 0.000 0.000  
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 6.000 0.000  
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 6.000  
 

The diagonal elements are exactly 12 and 6 and all off-diagonal elements are exactly zero. On 

the other hand, the error variance is based on the unexplained sum of squares and, 

accordingly, parameter tests are affected by the model chosen. Furthermore, we assume also 

that this model has the same properties as the annual model. When the data are based on a 

large number of observations, the monthly rates can be assumed to be asymptotically normal. 

The whole model can then be tested by the F test and the individual parameters by t tests ([5], 

[6]). The goodness of fit of the regression model can also be analysed with the coefficients of 

determination ( R2  or R 2 ). Still, the model-based tests detect the seasonal variation only if 

there is good agreement between the data and the model.  

Materials. In this study, we apply the annual and circadian models on multiple maternity 

ratios (MUR) in Switzerland (1876-1890), initially published by Weinberg [9] and twinning 

rates on the Åland Islands (1750-1949) given by Eriksson [10]. Recently these data sets have 

been analysed by Fellman [2], where the data sets are reprinted. 



8 

 

 

Applications 

Now we include in our study the detailed processes from the maximal regression model to the 

optimal model containing only significant parameters. This pathway shows how the included 

parameter estimates are almost identical irrespectively of the number of regressors of the 

models. The annual regression models for the Switzerland data are given in Table 1. As a new 

study, we build circadian regression models based on the approximate data sets where we 

assume that the year consists of 12 months of equal length (30 days). This attempt yields 

regression models with identical parameter estimates. The circadian regression models for the 

Switzerland data are given in Table 2. The corresponding pathways for the Åland data are 

given in Tables 3 and 4. For the Switzerland MUR data, the optimal annual model is 

12.390 0.780sin( ) 0.248cos( ) 0.241cos(2 ) 0.115cos(4 ) 0.197sin(5 )i i i i i iY t t t t t= + − − − + ,     (8) 

and it differs from the sinusoidal model given earlier ([4], [7]). The optimal circadian model 

for the Switzerland data is 

 12.393 0.778sin( ) 0.256cos( ) 0.233cos(2 ) 0.113cos(4 ) 0.200sin(5 )i i i i i iY t t t t t= + − − − + .    (9) 

Note the small differences between the two models. 

Figure 1 

For the Åland twin rate, the optimal annual model is ([4], [7]) 

23.208 2.738sin( ) 2.458cos( )i i iY t t= − −     (10) 

The optimal circadian model is  

23.189 2.770sin( ) 2.427cos( )i i iY t t= − − .    (11) 

Note the small differences between the two sinusoidal models. 

Figure 2 

Discussion 

The rates of multiple maternities are the monthly number of multiple maternities related to the 

monthly number of all maternities, ignoring the (monthly) number of days. Similar 
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comparisons of the seasonality of births and deaths cannot be performed because the study of 

births and deaths is based on cases per day. Other demographic variables such as sex ratio 

which is a rate per total number of maternities, could be objects for similar comparisons 

between annual and circadian models.  

Consequently, the model chosen has little influence on the parameter estimates. Exact 

orthogonality would be obtained if the data are equidistant, that is, if the months are of equal 

length (e.g. 30 days), corresponding exactly to 30 . Exactly equidistant data can be observed 

when circadian rhythms (24 hours) are studied. Comparisons of the obtained annual and 

circadian models show very small discrepancies, arising from the following facts. The 

monthly rates are obtained as ratios between the twinning maternities and the total maternities 

in the same month. The models are then applied to these rates. A comparison between the two 

models shows that the time variables are almost identical. The maximal difference between 

the two time scales is 4.75 days.  
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Table 1. The MUR in Switzerland (1876-1890). The set of 

annual models following the elimination of non-significant 

regressors in annual models. 

 Switzerland MUR,  1876 - 1890 Annual models 

Intercept 12.390 12.390 12.390 12.390 12.390 12.390 

COS1 -0.248 -0.248 -0.248 -0.248 -0.248 -0.248 

SIN1 0.780 0.780 0.780 0.780 0.780 0.780 

COS2 -0.241 -0.241 -0.241 -0.241 -0.241 -0.241 

SIN2 -0.001      

COS3 0.010 0.010     

SIN3 0.025 0.025 0.025 0.025 0.025  

COS4 -0.115 -0.115 -0.115 -0.115 -0.115 -0.115 

SIN4 0.019 0.019 0.019    

COS5 -0.022 -0.022 -0.022 -0.022   

SIN5 0.197 0.197 0.197 0.197 0.197 0.197 

R2 0.988 0.994 0.996 0.995 0.995 0.994 

 

Table 2. The MUR in Switzerland (1876-1890). The set of 

annual models following the elimination of non-significant 

regressors in circadian models. 

 Switzerland  MUR,  1876  - 1890 Circadian models 

Intercept 12.393 12.393 12.393 12.393 12.393 12.393 

COS1 -0.256 -0.256 -0.256 -0.256 -0.256 -0.256 

SIN1 0.778 0.778 0.778 0.778 0.778 0.778 

COS2 -0.233 -0.233 -0.233 -0.233 -0.233 -0.233 

SIN2 -0.006      

COS3 0.013 0.013     

SIN3 0.031 0.031 0.031 0.031   

COS4 -0.113 -0.113 -0.113 -0.113 -0.113 -0.113 

SIN4 0.021 0.021 0.021    

COS5 -0.032 -0.032 -0.032 -0.032 -0.032  

SIN5 0.2 0.2 0.2 0.2 0.2 0.2 

R2 0.989 0.994 0.995 0.995 0.993 0.992 
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Table 3. The TWR in Åland (1750-1949). The set of annual models 

following the elimination of non-significant regressors in annual models. 

  Åland TWR, 1750 -1949 Annual models   

Intercept 23.203 23.203 23.201 23.199 23.199 23.198 23.200 23.204 23.208 

COS1 -2.472 -2.474 -2.475 -2.476 -2.477 -2.474 -2.474 -2.467 -2.458 

SIN1 -2.748 -2.749 -2.749 -2.749 -2.751 -2.751 -2.751 -2.746 -2.738 

COS2 -0.606 -0.606 -0.61 -0.612 -0.61 -0.608    

SIN2 1.117 1.116 1.115 1.112 1.113 1.111 1.112 1.117  

COS3 -1.096 -1.097 -1.1 -1.1 -1.097 -1.094 -1.093   

SIN3 -0.41 -0.411 -0.411             

COS4 0.138         

SIN4 0.603 0.603 0.598 0.594 0.601     

COS5 0.368 0.367        

SIN5 0.460 0.459 0.454 0.452      

R2 -0.242 0.373 0.557 0.644 0.692 0.709 0.721 0.672 0.630 

 

Table 4. The TWR in Åland (1750-1949). The set of annual models 

following the elimination of non-significant regressors in circadian models. 

   Åland TWR,  1750-1949 Circadian model  

Intercept 23.189 23.189 23.189 23.189 23.189 23.189 23.189 23.189 23.189 

COS1 -2.427 -2.427 -2.427 -2.427 -2.427 -2.427 -2.427 -2.427 -2.427 

SIN1 -2.77 -2.77 -2.77 -2.77 -2.77 -2.77 -2.77 -2.77 -2.770 

COS2 -0.647 -0.647 -0.647 -0.647 -0.647 -0.647    

SIN2 1.112 1.112 1.112 1.112 1.112 1.112 1.112 1.112  

COS3 -1.049 -1.049 -1.049 -1.049 -1.049 -1.049 -1.049   

SIN3 -0.453 -0.453 -0.453             

COS4 0.138         

SIN4 0.621 0.621 0.621 0.621 0.621     

COS5 0.379 0.379        

SIN5 0.512 0.512 0.512 0.512      

R2 -0.215 0.387 0.564 0.644 0.686 0.702 0.711 0.669 0.628 
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Figure 1. Seasonality of the rate of multiple maternities (MUR) in Switzerland (1876-1890). 

The obtained optimal model based on the annual models is included in (a) and based on the 

circadian models is included in (b). Details are discussed in the text. 
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Figure 2. Seasonality of the rate of twin maternities (TWR) in Åland (1750-1949). The 

obtained sinusoidal model based on the annual models is included in (a) and the obtained 

sinusoidal model based on the circadian models is included in (b). 


