Do Blockchain and Circular Economy Practices Improve Post COVID-19 Supply Chains?
A Resource-Based and Resource Dependence Perspective

Santosh Nandi (Division of Business Administration and Economics, University of South Carolina Sumter, Sumter, South Carolina, USA) (School of Business Administration, University of South Carolina Aiken, Aiken, South Carolina, USA)
Joseph Sarkis (Foisie Business School, Worcester Polytechnic Institute, Worcester, Massachusetts, USA) (Hanken School of Economics, Humlog Institute, Helsinki, Finland)
Aref Hervani (University of South Carolina Aiken, Aiken, South Carolina, USA)
Marilyn Helms (Dalton State College, Dalton, Georgia, USA)

Abstract

Purpose – Using the resource-based and the resource dependence theoretical approaches of the firm, the paper explores firm responses to supply chain disruptions during COVID-19. The paper explores how firms develop Localization, Agility, and Digitization (L-A-D) capabilities by applying (or not applying) their critical circular economy (CE) and blockchain technology (BCT) related resources and capabilities that they either already possess or acquire from external agents.

Design/methodology/approach – An abductive approach, applying exploratory qualitative research was conducted over a sample of 24 firms. The sample represented different industries to study their critical BCT and CE resources and capabilities and the L-A-D capabilities. Firm resources and capabilities were classified using the technology, organization, and environment (TOE) framework.

Findings – Findings show significant patterns on adoption levels of the blockchain-enabled circular economy system (BCES) and L-A-D capability development. The greater the BCES adoption capabilities the greater the L-A-D capabilities. Organizational size and industry both influence the relationship between BCES and L-A-D. Accordingly, research propositions and a research framework are proposed.

Research limitations/implications – Given the limited sample size, the generalizability of the findings is limited. Our findings extend supply chain resiliency research. A series of propositions provide opportunities for future research. The resource-based view and resource-
dependency theories are useful frameworks to better understanding the relationship between firm resources and supply chain resilience.

Practical implications – The results and discussion of this study serve as useful guidance for practitioners to create CE and BCT resources and capabilities for improving supply chain resiliency.

Social implications – The study shows the socio-economic and socio-environmental importance of BCES in the COVID-19 or similar crises.

Originality/value – The study is one of the initial attempts that highlights the possibilities of BCES across multiple industries and their value during pandemics and disruptions.

Keywords for Indexing: Blockchain, Circular Economy, Supply Chain, COVID-19, Resource-Based View, Resilience

Paper type. Research paper

Do Blockchain and Circular Economy Practices Improve Post COVID-19 Supply Chains?

A Resource-Based and Resource Dependence Perspective

1. **Introduction**

 The COVID-19 virus and the ensuing world pandemic resulted in unprecedented disruption to global supply chains (Hobbs, 2020; Singh, Kumar, Panchal, and Tiwari, 2020), especially in meeting customer demand. Along with increased attention on ways to improve supply chains and build their resilience (Ivanov and Das, 2020), there has emerged a call for more sustainable supply chain perspectives which are important to long-term viable supply chains (Ivanov, 2020; Sarkis et al., 2020).

 Given the COVID crisis, supply chain resilience has come to the forefront. Sustainable supply chains and circular economy (CE) principles may provide long-term avenues for building economic and supply chain resilience while contributing to social and environmental sustainability (Sarkis, 2020). CE has served as a driver of change to increase sustainability leading to resilience (e.g. Bag et al, 2019; Wuyts et al., 2020). As a COVID-19 example, the CE
practices have helped establish closed resource loops for raw materials of medical supplies to alleviate shortages. Localization efforts are also enhanced given that end-of-life materials can be found locally and through CE practices have been identified as ways to reinforce materials, furthering supply chain resilience. Technological solutions and innovations, such as Industry 4.0 and blockchain technology can further strengthen CE, sustainable supply chains, and overall supply chain resilience (Bag et al., 2020; Golan et al., 2020).

Technologies, especially information technologies with digitalization, can provide timely information, transparency, and visibility into the supply chain and help build supply chain resilience. In this regard, the emerging blockchain technology (BCT) can support CE practices (Kouhizadeh, et al., 2020) helping to also build resilience.

Due to a greater focus on cost-saving measures, supply chain brittleness is more evident during this COVID-19 crisis (Choi, Rogers, and Vakil, 2020) with disruptions from significant unexpected shifts or volatility in demand. Global supply chain vulnerabilities became evident during the COVID-19 crisis due to border regulations, shutdowns, and lack of control. Together CE and BCT have the potential to support supply chain resilience factors including building localized, agile, and digitalized supply chains (Sarkis, et al., 2020; Choi, 2020; Queiroz, et al., 2020). We take this joint emergent perspective and evaluation in this paper. The perspective is important for current and future supply chain resilience study and understanding, as well as broader contributions to understanding environmental and social sustainability; and has yet to be fully investigated.

To address supply chain brittleness, we argue that CE can aid localization, agility, and digitization (L-A-D) of supply chains. First, CE can aid localization by providing a localized closed-loop supply chain. Second, CE can facilitate agility by allowing for various options such as byproducts and waste exchanges for materials, in addition to supporting sharing economy
activities allows for greater resource flexibility. Third, although CE may not initially include
digitalization, CE efforts along with blockchain technology can enhance L-A-D. When BCT-
based digitalization is applied to CE conceptualizations such as identifying various local
materials, waste, or by-products and supporting a sharing economy to take advantage of unused
capacities in a system, CE and BCT are complementary. Together we define the CE and BCT
amalgamation as a blockchain-enabled circular economy system (BCES).

Accordingly, we argue BCES capabilities lead to L-A-D capabilities that organizations
and their supply chains can counter major disruptions of pandemic situations and their aftermath.
Together, these capabilities can help build competitive advantage or resilience in times of crisis,
but potentially in non-crisis periods as well. Our contribution is to support this argument and
provide research direction based on learning of responses of organizations and their supply
chains to the COVID-19 crisis. Additionally, our study contributes to the supply chain resilience
literature by proposing how firms should integrate BCES capabilities to facilitate supply chain
localization, agility, and digitization (L-A-D) in efforts to counter supply chain disruptions. This
study provides managerial insights that contribute to supply chain practice. In making these
practical and theoretical contributions, we ask and seek to answer the following research
questions:

RQ1: What are the BCES resources and capabilities that firms possess to build L-A-D
capabilities in response to post-pandemic disruptions.

RQ2: What are the BCES resources and capabilities that firms need to acquire to build L-A-D
capabilities in response to post-pandemic disruptions.

RQ3: Do industry and organizational size affect the relationship between BCES and L-A-D
capabilities?

RQ4: Do industry supply chain characteristics play a role in the relationship between BCES and
L-A-D?
To study the relationship between BCES and L-A-D capabilities of a supply chain at the firm level, we conduct an abductive qualitative exploratory study of the critical resources and capabilities requirements and positions using the resource-based view (RBV) (Barney, 1991) and resource dependence theory (RDT) (Pfeffer and Salancik, 1978) lenses. For our analysis, we apply the Technology, Organizational, and Environmental (TOE) theoretical framework (Baker, 2012) to categorize organizational resources and capabilities of organizations.

We organized this paper into six sections. In Section 2, we present the theoretical background of the study. In Section 3, we explain the methodology used to achieve the research objectives of the study including the data collection method, the development of identification frameworks for content analysis, and the data analysis methods. In Section 4, we discuss the findings of the data analysis of each research question and related propositions. In section 5, we discuss the theoretical and practical implications of our study. Section 6 concludes the study with limitations and directions for future research.
2. Literature Review

In this section we present the theoretical background of the circular economy, blockchain technology, supply chain outcomes, the resource-based view, and the resource dependence theory. The following sections begin with an overview of the circular economy. Blockchain technology—an emerging technology--only recently finding applications among supply chain participants is next (Saberi et al., 2019). The resource-based view theoretical underpinning considers organizational capabilities available for a firm is also reviewed. Resource dependence is evaluated through resources available externally to the firm or supply chain that can be leveraged in a partnership or other relationship to benefit the firm and the supply chain collectively along with end-users and consumers. The TOE framework used to categorize capabilities is also introduced in this section. The foundations of these concepts and theories are presented separately and, in more detail, below.

2.1. The circular economy (CE)

The CE—although viewed as an essentially contested concept (Kirchherr et al., 2017; Korhonen, et al., 2018)—typically has a goal to reduce waste and minimize the use of limited natural resources, while improving the economic performance of regions and firms. CE integrates closed-loop systems where limited waste is generated rather than historically linear production systems with multiple waste streams (Geissdoerfer et al., 2017; Jabbour et al., 2019; Murray et al., 2017) contributing to a more sustainable society (de Jesus and Mendonca, 2018; Geng et al., 2016; Genovese et al., 2017). There is a call for industrial and tier-wise supply chain linkages along the life cycle of products—transforming upstream production and consumption processes (Nandi, Hervani, et al., 2020; Nandi and Kaynak, 2020). The circular economy is related to creating circular supply chains and can address resource needs in pandemics.
Hussain and Malik (2020) note that CE relates to supply chain resilience and capabilities. Industry 4.0 resources, such as big data, cloud computing, and Internet of things (IoT) can support a CE system (Bag, et al., 2020). Redesigning supply chains to meet CE goals and its effectiveness in developing supply chain resilience is still a nascent phenomenon (Takeda, et al., 2018). Due to the COVID-19 pandemic, this CE-supply chain resilience linkage has gained momentum (Ivanov and Dolgui, 2020; Sarkis et al., 2020; Sharma et al., 2020). Combining BCT with CE can help CE progress (Kouhizadeh, et al., 2019. The BCT-CE linkage has not been investigated from a supply chain resilience perspective (Fahimnia et al., 2019). In this study, we seek to consider these linkages.

2.2. Blockchain technology (BCT)

BCT is a decentralized transaction and data management technology used most popularly for Bitcoin cryptocurrency (Nakamoto, 2009). BCT helps create a decentralized environment where no third party is in control of digital transactions and data (Yarmack, 2017). A blockchain network has no central authority. Since it is a shared and immutable ledger, the information in it is open for participants in the supply chain to access and see. This situation creates transparency and is a crucial tenet of traceability necessary for global supply chain management and can aid in localization efforts. There are growing concerns among corporations and consumers regarding social and environmental sustainability (Groening et al., 2018). BCT helps address various sustainability dimensions through decentralized and immutable data, reliable data, transparency, traceability, smart contracts, and incentivization (Nandi, Nandi, et al., 2020). BCT positively influences supply chain resilience strategies, particularly through collaboration, agility, velocity, and visibility (Kalla et al., 2020; Lohmer et al., 2020; Min, 2019).

BCT can aid multiple supply chain stages by providing data across supply chain stages incorporating multiple stakeholders, valuing supply chain socio-environmental sustainability
(Kouhizadeh, et al., 2021; Kouhizadeh and Sarkis, 2018; Saberi et al., 2019). BCT traceability considerations contribute to this resilience (Behnke and Janssen, 2020). Supply chain systems must be modified, and boundary conditions established before successful BCT information sharing. BCT smart contracts can contribute to agility and supply chain resilience (Nandi and Nandi, et al., 2020). BCT can also act as an incentivizing mechanism, encouraging stakeholders to adopt new products and processes (Kouhizadeh et al., 2020). Blockchain incentives can include cryptocurrencies or tokens (Chen, 2018). These incentives may support a wide variety of sustainability practices, products, and processes including CE (Kouhizadeh, et al., 2020). BCT-enabled CE systems can effectively create shared value, scale innovation, and generate new ideas (Narayan and Tidström, 2020). BCT can help incentivize cooperative efforts within the CE ecosystem. For example, Circularise, a technology start-up, developed a web-based blockchain system that allows information exchange between participating CE ecosystem members (Circularise, 2020). Consider the neurological damage that high-mercury fish can cause to consumers (Amidor, 2009).

2.3. The resource-based view and the resource dependence perspective of blockchain-enabled circular economy system (BCES)

RBV, also known as resource-based theory, focuses on resources and its capabilities that an organization already owns and/or could own to build competitive advantages. RDT presents relationships to resources that organizations might obtain from their environment building competitiveness. RBV provides an examination of intra-organizational relationships of resources and its capabilities to explain why and how some organizations outperform others — gain competitive advantages (Barney, 1991; Newbert, 2008). RBV argues the more customer added value an organization provides than competing organizations the more competitive advantage for the organization (Barney and Clark, 2007; Nandi, Nandi, et al., 2020). RDT
assumes that organizational performance is dependent on its environment, and stresses inter-
organizational efforts to secure resources and reduce environmental uncertainty (Pfeffer and
Salancik 1978; Bode et al., 2011; Tashman, 2020). RDT identifies two major organizational
objectives: to minimize their dependence on other organizations and to maximize other
organizations' dependence on themselves (Ulrich and Barney, 1984).

Organizational resources and capabilities have emerged as core strategic theoretical
lenses. Tangible and intangible resources help firms establish relational competitive capabilities.
Knowledge capability can build intangible resources and allow dynamic organizational learning
in organizations for the natural environment (Beske et al., 2014; Bhupendra and Sangle, 2015;
Hart, 1995). Relational capability is meant to augment the resources of alliance partners to
create, extend, or modify their resource bases (Teece, 2000; Hefalt and Peteraf, 2003). Few
studies have used both RBV and RDT theories concurrently to investigate organizational
dominant resources and capabilities (c.f., Blomsma et al., 2019; Frączkiewicz-Wronka and
Szymaniec, 2012; Nemati et al., 2010; Tehseen and Sajilan, 2016). Taking cues from prior
literature, we stress upon the complementary role of RBV and RDT lenses in identifying critical
BCT and CE firm resources and capabilities required to build or reinforce L-A-D supply chain
capabilities. L-A-D capabilities help organizations respond to supply chain disruptions
especially those evidenced in the COVID-19 crisis (Asamoah et al., 2020; Sweeney, 2020;
Mishra et al., 2019). This assimilation of internal and external capabilities and resources is
aligned with the concepts of buffering and bridging strategies (Manhart and Summers, 2020).

CE from an RBV perspective would identify organizational resources that can support
cascading circular strategies across their supply chains (Miles and Snow, 1978; de Sousa Jabbour
et al., 2019). RBV resources exist within the organization’s boundary as input materials, parts,
finished goods/services, machinery, facilities, and infrastructure. Organizational competencies
include knowledge, skills, and applicability of business processes related to planning, leading, organizing, and controlling CE configurations (Schnittfeld and Busch, 2016; Blomsma et al., 2019). As an example, design-for-recycling capabilities and technologies are internal capabilities and resources that an organization may have to support CE practices. Not only that, possessing technological resources that can be bundled to run Industry 4.0-based sustainable operations can be classified as strategic resource amalgamations to achieve a competitive edge (Bag et al., 2020). Such technological resources may include cyber-physical systems, smart sensors, machine-human interactions, big-data, and blockchain-based data transparency systems. In addition to owning internal CE resources and capabilities, organizations may have to depend on external agents and the external environment for CE resources and competencies. For example, a recycled plastic packaging solution firm constantly faces dynamism in securing high-quality recyclable plastic from the market. Applying the RDT concepts of organizational effectiveness, interdependence, and external control from the CE perspective would allow firms to consider how resources and capabilities can be accessed from the external CE value chains. To have more power and control they would have to determine how they could minimize their dependencies for acquiring CE resources and capabilities and-or maximize the dependency of their value network on their CE resources and capabilities (Franco, 2017; Blomsma et al., 2019).

Interestingly, RDT also provides effective control mechanisms to organizations on how to readjust their structure and conduct to reduce both uncertainty in and dependency on their external environment (Hillman et al., 2009). Such control mechanisms include power or trust-based or legally binding forms of collaborations, coalitions, joint purchasing agreements, and other types of strategic partnerships that can support CE implementations in their supply chains. An efficient organizational supply chain system provides partners with a greater ability to respond to market changes and customer requests and build competitiveness (Rogers et al., 1993;
Stank et al., 1999). By enabling BCES-driven supply chain processes, organizations can create sustainable supply chain resources and capabilities, which are firm-specific and hard to duplicate across organizations (Powell and Dent-Micalef 1997; Wu et al., 2016; Nandi, Nandi, et al., 2020). Large organizations have shown significant interest in advancing their supply chain BCT resources and capabilities. BCT can help build stronger supply chain capabilities through collaboration, agility, velocity, and visibility, which are critical for firms to operate and recover during supply chain disruption. An RBV analysis could help identify BCT-linked strategic and operational capabilities of a CE nature—BCES—that organizations already possess; RDT can enable organizations to develop governance and control mechanisms to access such capabilities for implementing BCES practices (Bode, 2011; Paulraj and Chen, 2007).

2.4. TOE (technology, organizational and environmental) framework

We will use the TOE framework to evaluate organizational resources and capabilities (Clohessy and Acton, 2019). TOE theory suggests that when firms advance their assets and knowhows to gain competitive leverages, the impact of such advancements can be related to the technological (T), organizational (O), and environmental (E) contexts (Baker, 2012; Kouhizadeh et al., 2020). The technological context explains the importance and readiness of a technological improvement resulting from such advancements. The organizational context identifies the firm’s organizational decision-making structure and strengths to facilitate such advancements. The environmental context explains the eagerness of markets, industries, and the regulatory environment to adopt those advancements, and overall relationship to competitive environmental concerns. Baker’s (2012) research has been extended to BCT evaluation in operations and supply chain management (Wong et al, 2020), sustainability technology and blockchain technology (Bai and Sarkis, 2020), and information service competence (Hung et al, 2020) and a host of other academic research studies.
Scholars often use the TOE framework to study how the existing state of the three elements influence and/or are influenced in the process of adopting and implementing and implementation of a given phenomenon (Kouhizadeh et al., 2021; Baker, 2012; Tornatzky et al., 1990). In RBV-grounded studies, scholars tend to frequently apply the TOE framework to understand barriers and enablers of a given technological trend, such as determinants of mobile-business use and value (Picoto et al., 2014), drivers of IT-enablement (Wu and Chiu, 2015), determinants of ERP use and value for small and medium manufacturing and services firms (Ruivo et al, 2016; Jayeola et al., 2020), drivers for business analytics adoption (Kumar et al., 2020). The application of the TOE framework from an RDT perspective requires further development and this study builds on that relationship. Recent studies in the information and data systems discipline have used the TOE framework to highlight BCT adoption-related organizational characteristics. The TOE framework can evaluate the socio-technical adoption factors of data-sharing initiatives (Wang and Lo, 2016) and digital transformation initiative enablers and inhibitors (Modiba and Kekwaletswe, 2020). BCT adoption largely depends on top management support and organizational readiness of organizations to adopt BCT and that large-sized firms are more likely to adopt BCT than small to medium-sized firm due to their unique resource sufficiency positions. In the sustainable supply chain context—but not necessarily from an RDT perspective—the TOE framework has been recently applied to analyze BCT adoption barriers in utilities, food, healthcare, and logistics supply chains (Kouhizadeh et al., 2021).

2.5. Localization, agility, and digitization (L-A-D) as post-pandemic supply chain resilience capabilities

Supply chain resilience commonly stresses a firm’s ability to absorb disruptions or to return to state conditions faster (Sheffi and Rice, 2005). Key characteristics and drivers of supply chain resilience include agility, visibility, flexibility, collaboration, and information
sharing (Hosseini et al., 2019). Using the COVID-19 context, we have focused our research on supply chain resilience capabilities related to L-A-D. The L-A-D capabilities arose from early crisis supply chain disruptions and remain pertinent in the post-pandemic improvement discourse (Nandi, Sarkis, et al., 2020). We assert these three capabilities also relate to BCES. COVID-19 has arguably renewed attention on CE, sustainable supply chains, and production (Ivanov and Dolgui, 2020; Queiroz, et al., 2020; Sarkis, et al., 2020). Localization stresses the need for government subsidies and technology to encourage and incentivize localization and to use transportation logistics and technologies in an innovative change in the prior business model (Choi, 2020). L-A-D relationships and issues are now summarized.

2.5.1. Localization

With COVID-19 and globalization lockdown or ill employees in one part of the globe quickly resulted in shortages in other areas. Localized sourcing, for example for PPE and even food, became critical. Localization can address supply chain brittleness while leading to sustainable supply chain co-benefits—local sourcing is usually greener and strongly socially supported. Localization benefits include lessened transportation requirements and fewer greenhouse gas emissions and saves fuel. Initiatives including reshoring of manufacturing closer to the end-user (insourcing activities) share the same advantages with shorter supply chains that are agile and can respond faster. However, the ability to localize depends on the presence of material and resources for sourcing in each area. The circular economy model depends on local wastes that can be used as raw materials to make new products that can be used in the local area making localization and CE inexorably linked. BCT can support localization by identifying and tracing local sources. For example, in weather or humanitarian crises or disaster, localization is designed to foster local capabilities and targets the efforts based on the needs of the area.
2.5.2. Agility

Agility—as a supply chain resilience response—also emerged during the COVID-19 pandemic (Ivanov, 2020). Demand and supply for some goods increased at a rapid rate causing shortages and insecurity while demand for other goods quickly decreased. The volatility of these patterns caused significant uncertainty. With consumers largely working at home, larger quantities of industrial products for cleaning and hygiene plummeted while consumer sizes of such products increased overnight. Products for home offices and home schooling grew as did the need for increased Internet and energy usage by households. Public transportation along with air travel decreased but the demand for on-line meetings increased. This volatility and rapid shift in demand and supply highlighted the need for agility within supply chains (Ketchen and Craighead, 2020). Many suppliers and producers could not respond quickly or with the flexibility to meet demand. The lockdown by manufacturers in China rippled through other countries and forced local manufacturers to switch their production lines to manufacture needed products. Thus, agility was highlighted as a preferred approach for organizations and their supply chains versus the more cost-focused and just-in-time (JIT) management principles of the past which led to shortages and anguish (Golan et al., 2020).

Agility is a way to meet customer demands allowing organizations to compete within rapid market changes and rapid opportunism (Al Humdan et al., 2020). Agility requires information from markets, on demand, and a supply chain partner’s integrated capability to resolve demand needs; BCT can offer this information. It is timely, flexible, and must be responsive. In a supply chain, agility demands a rapid response to changes both upstream and downstream; CE practices such as local sourcing, byproducts development, and repair offer opportunities for agility (Sarkis, et al., 2020; Sharma et al., 2020). The long-lasting effects of COVID-19 will include the growth of online grocery delivery and prioritization of local food
supply chains that can more rapidly adjust to shock and changes in buying patterns (Hobbs, 2020). Agility helps supply chain networks return to normal in post-pandemic situations (McMaster et al., 2020). The building of agility in various ways—such as through excess capacity, multiple sourcing, and flexibility investments—can overcome some of this volatility.

2.5.3. Digitization

The COVID-19 pandemic has necessitated social distancing and isolation practices socially and at work. Individuals substituted air travel and work from the office for virtual business meetings and working from home—digitization of content and meetings increased during the COVID crisis. The COVID-19 disruption has pushed firms to create new norms for operations (Borowski, 2020). While a few firms operating in the digital business spaces (e.g., Zoom and Netflix) and their interconnected partners (e.g., e-pharmaceuticals and e-gymnasiums) have gained above normal profits. Other firms that continued to rely on non-digital brick-and-mortar operations faced staffing layoffs, limited operations, postponing production, and/or temporarily closing during the pandemic (Nagar, 2020). The pandemic has also impacted supply chains by creating shortages of materials and delays in the delivery of ordered products and services in almost every industry sector. Firms must deploy suitable digitization approaches to resume normalcy within and outside their supply chain scopes. In their meta-analytic review, Anthony and Petersen (2020) find that a firm’s ability to digitize operations depends on how well it can create or provide an adequate sense of urgency, budgeting adequacy, staffing skillsets, management support, senior leadership, and overall corporate culture towards digital transformation.

Supply chain digitization has helped firms maintain shipments of goods and services, allowing for work meetings and family socialization, and even on-line purchases that may not
have been available to consumers in their home markets (Matthews, 2020). Theoretically, digitization drives visibility, information sharing, and collaboration capabilities of supply chains, which in turn may infuse agility and visibility of supply chains (Hosseini et al., 2019). Moreover, combining Industry 4.0 and CE can enhance the operational and logistical concerns of the supply chain partners for sustainability performance (Bag et al., 2020). Digitization is vital to CE and sustainable supply chains because it lessens transportation costs, pollution, and personnel to build agility through the application of digital methods and delivery. BCES can aid all three L-A-D effectively. Ting et al. (2020) noted digital technologies like BCT can be used to remediate the COVID-19 outbreak. The links within L-A-D have yet to be fully analyzed in the literature for supply chain resilience (Pereira, et al., 2019; Reza-Gharehbagh, et al., 2020).

Agility supply chain research has focused on measuring flexibility, links to technology (Russell and Swanson, 2019), and resilience (Das et al., 2019; Gligor et al., 2019). Each of the L-A-D measures plays a role in building supply chain resilience using BCES.

3. Research methodology

New knowledge can be acquired using three research approaches—inductive, deductive, and abductive. Each of the three research approaches asks three common questions to the researcher. First, what is the aim of the research that is, whether the research objectives are oriented towards theory development or theory testing. Second, what is the starting point of the research process, whether the research process begins with an existing theoretical base or an empirical base, or both. Third, what is the juncture where hypotheses or propositions can be established. An inductive research approach begins with the collection of observations of specific instances and seeks to establish common patterns (or new theoretical bases) that may emerge from the empirical observations. A deductive research approach begins with an established theoretical base and seeks to extend upon the existing theoretical knowledge within a
specific research context (Kovacs and Spens, 2005). An abductive research approach chooses a middle ground of theory matching and theory refining (Kovacs and Spens, 2005). More specifically, it follows a complex reasoning process in which explanations to a real-life phenomenon are formed and evaluated iteratively moving back and forth between existing theory and the real-life phenomenon with existing real-world data in the background (Dunne and Dougherty, 2016). In an abductive approach, all three steps–theory development, data collection, and analyses–can occur simultaneously and interdependently. The outcomes of an abductive research approach are normally those deviations from the general structure that a purely inductive or deductive approach could not possibly examine and/or identify (van Hoek, Aronsson, et al., 2005). New knowledge thus generated may suggest hypotheses or propositions that can later be tested using deductive research methods (Nandi, Nandi, et al., 2020).

In our study, we adopt an abductive approach for three key reasons. First, our study investigates the advances made by firms along with two technological phenomena – BCT and CE – that could bring sufficient complementarities in improving supply chain resilience. Even though the knowledge bodies of both BCT and CE have significantly grown in recent years, they appear incongruently complex and unstable when it comes to their performance appraisal in a sustainable supply chain context (Bai and Sarkis, 2020). As a result, neither inductive nor deductive approaches appear as suitable alternatives for drawing appropriate conclusions (Krippendorf, 2004). Second, our research objectives are geared toward improving the current understandings of BCT and CE from a supply chain resilience perspective, instead of proposing a new resiliency theory (Dubois and Gadde, 2002). Our research questions are framed to derive meaningful interpretations abductively by thoroughly examining organizational plans, adoptions, and practices for BCES. Third, our study aims to develop a set of propositions that are supported
by theoretical justifications and empirical observations of the BCT and CE phenomena, in isolation or combination as BCES (Lin, Kuei, and Chai, 2013).

Using abduction logic previously suggested by Nandi, Nandi, et al. (2020), we proceeded with our qualitative evaluation of the collected secondary data as shown in Figure 1. The collected sample data for the study comprise: (a) the first set of secondary data generated from articles from health-related, general, and industry-specific supply chain disruption issues that described how firms are being or might be affected by COVID-19; and (b) the second set of secondary data generated from firm-specific corporate reports, patents, press releases about their advances in BCT and CE activities of a selected set of firms from different industries that are operating within the US or globally.

----- Insert Figure 1 About Here -----

The first set of articles highlighted some of the core supply chain disruption issues in different settings in the wake of COVID-19. The second set of articles provided data for representative cases per core supply chain disruption issue. Next, we developed an evaluation framework to identify appropriate data that related our theorization of BCES approaches for L-A-D outcomes when supply chain disruptions occur. The purpose of the identification framework is to guide in identifying critical BCT and CE resources and capabilities that each representative firm already possesses and/or needed to acquire and the likely L-A-D outcomes.

We refined our initial identification framework as we iteratively progressed through the analysis. Therefore, our abductive research approach appears neither constrained by existing supply chain theories nor turns out to be inundated for data fit, instead our data interpretations were both theoretically and empirically balanced (Karatzas et al., 2017).
Moreover, the abduction process applied in our qualitative analysis facilitated the identification of interlinkages between CE and BCT and further supported the role of management theories (namely, RBV and RDT in our case) to adjudicate between proposed conditions of resources and capabilities relating to how to build L-A-D based supply chain capabilities (outcomes) (Lipscomb, 2012; Lin, Kuei, and Chai, 2013).

3.1. Data collection

We initially identified COVID-19 impact on supply chains from the CIDRAP1 website. These initial empirical points—leads—were qualified based on the relevancy of the supply chain disruption event they captured. Qualified leads acted as our first set of the data link to identify health-related, general, and industry-specific supply chain disruption issues. Each data point was augmented with other data sources including industry trade journals, business news, and business sections of leading newspapers during the March to September 2020 time frame; most pandemic-related supply chain concerns peaked during this period. For this exploratory research, we created our first level of data by exploring over 200 news articles highlighting challenges across 19 industries classified by 4-digit SIC code.

Based on our first level of data, we created our second level of data by qualifying 24 representative firms of varying size that are spread across industries and operate in the US or globally. For each of the 24 representative firms, we searched Web sources using the combination of the keywords “Firmname + blockchain”, “Firmname + circular economy”, “Firmname + reverse logistics”, “Firmname + waste management”, “Firmname + sustainable

1 The Center for Infectious Disease Research and Policy (CIDRAP) maintains a database of recent articles related to business supply chain issues during COVID-19. More information is available at: https://www.cidrap.umn.edu/covid-19/supply-chain-issues
supply chain”, and “Firmname + sustainability” to find information related to their CE and BCT advancements. We eliminated those news articles that provided general discussions on BCT and CE about the industry state and were not specifically linked to the representative firm.

We focused on searching CE and BCT information in company released announcements, corporate reports such as sustainability reports, academic papers, and patent records. Table 1 presents the selected cases by industry and data sources. After the screening, the final data set comprising evidence of firm efforts for CE and BCT advancements in their supply chains, in terms of planning, piloting, prototyping, partnering, implementing, and committing to invest.

3.2. Identification framework for data analysis

The authors developed an evaluation framework for coding the validity of our case study’s critical BCT and CE resources and capabilities that each representative firm already possesses and/or needed to acquire and the likely L-A-D outcomes. We used the RBV as the theoretical grounding to identify resources and capabilities that firms already possessed to their competitive advantage for L-A-D outcomes (Barney, 1991). We relied on RDT to describe those BCT resources and capabilities that firms might have to depend on their external environment to gain L-A-D outcomes.

Using TOE theory, we evaluated the strength of firm resources and capabilities from technological, organizational, and environmental contexts (Baker, 2012). We applied literature in supply chain resilience (Sabahi and Paraset, 2020; Behzadi, O’Sullivan and Olsen, 2020; Remko, 2020; Centobelli, Cerchione, and Ertz, 2020; Hosseini et al., 2020; Wang, et al., 2019; Hendry et al., 2019; Bugert and Lasch, 2018; Qazi et al., 2018) to identify consequential
localization, agility, and digitization effects in their supply chains as a result of adopting BCES strategy. In Table 2, we present the identification framework in greater detail.

----- Insert Table 2 About Here -----

3.3. Data analysis

Resources and capabilities that organizations already possess within their firm boundary can be evaluated using an RBV lens; resources and capabilities that organizations need to depend on or makes others depend on them—given their inter-organizational relationships—can be evaluated using resource dependence theory. Our data sample includes observations and empirical information about BCES and L-A-D characteristics gathered from a data sample of 24 case firms and their responses to the COVID-19 pandemic. In compliance with the abductive approach (Beghetto, 2019), the data analysis followed an iterative process of consultation between theories, data sources, data collection, data clarification, and data interpretation among the research team to test the hypotheses generated. Following the recommendations of Zelechowska, Zyluk, and Urbanski (2020), we evaluated our generated hypotheses designing a context for analysis to allow the data gathered to be appropriate for both qualitative and quantitative analysis. Also, we followed the methodological approach proposed by Oh (2008) in stages of inquiry beginning with exploration, examination, selection, and finally explanation (see also Vertue and Haig, 2008 and Kwon, Lee, Shin, and Jeong, 2009). The exploration stage of our analysis provided the prior background and literature review of the constructs and variables leading to our hypotheses. Our examination consisted of recent literature on supply chain responses during the COVID-19 pandemic and the selection phase consisted of a sample of 24 case firms for in-depth analysis using the deductive methodological approach. All co-authors participated in the selection phase, collectively choosing the final sample.
For the sample of 24 case firms, we randomly divided the data interpretation tasks between four members of the research team. The authors independently coded the sample firms based on their assessment of the BCT and CE efforts and likely L-A-D outcomes following the evaluation framework proposed. In several instances, the authors consulted additional data sources to gain a more comprehensive understanding of the case, whether a company or industry, and the current state of BCT, CE, and L-A-D of supply chain aspects. For example, in the case of Edmunds, the authors consulted supply chain collaboration literature covering the collaborative partnering concept that relates to the CE principles of sharing platform and BCT plays a big role in creating L-A-D outcomes (Ramanathan and Gunashekararan, 2014).

After individual coding, another co-author of the four-member team also coded the same article (company and/or industry) alone. Then all four authors collectively validated the data findings of the study sample through structured discussions to reach a final classification consensus. Any initial differences in interpretations among the four authors were resolved by referring to the interpreted data of the case with additional external secondary data sources. A similar procedure was followed to reliably rank the levels of BCT, and likely L-A-D outcomes per case firm in the study sample. The final stage of the abductive methodological approach-based explanation is presented in Section 4 below.

4. Study findings and propositions

This section provides the study findings. These findings are summarized and analyzed in subsections 4.1, 4.2, 4.3, and 4.4. The results are shown in Figure 2 and described in this subsection to help arrive at a series of research propositions. Further analysis is based on the relationships identified in Figure 3; which is detailed in section 5.
Figure 2 represents a summary plot of our qualitative evaluation. The plot represents two axes. The horizontal or x-axis represents the level of BCT capabilities and resources adopted or implemented by a firm during the COVID-19 pandemic. The vertical or y-axis represents the level of CE capabilities and resources adopted or implemented by a firm during the COVID-19 crisis. Figure 2 is categorized into nine different grids based on the level of BCT-CE capabilities and resources and is shaded into a spectrum of colors representing five levels.

These five levels include: no L-A-D (red), less L-A-D (yellow), moderate L-A-D (orange), high L-A-D- (light green), and very high L-A-D (dark green). Besides, the size of the colored square represents the size of the company in terms of annual revenue. Smaller boxes represent smaller companies with annual revenue of less than $1 billion; medium boxes represent mid-sized companies with annual revenues of $1 to $10 billion; and finally, the large boxes represent large companies with annual revenues of over $10 billion. Figure 2 is based on the detailed data shown in Appendix 1. Thus, the analysis in this section relies primarily on Figure 2 and the data presented in Appendix 1.

4.1. A resource-based view of BCES

A basic tenet of RBV is that organizations develop their capabilities to build their competitive advantage. In this case, the BCES capabilities—or lack thereof—will influence COVID crisis response and other potential disruptions to supply. The results show that organizations with foundational internal capabilities associated with BCES capabilities adopt L-A-D practices to overcome COVID-19 issues and influence supply chain resilience (Queiroz, et al., 2020). In our sample, medium to larger companies have the characteristics—and likely the
financial and slack capacity—to build various BCES resources and capabilities. For example, Caterpillar—realizing that some materials and components were likely to be scarce—shifted their production capabilities to utilize some CE principles such as remanufacturing products that could be easily repaired or upgraded.

Similar end-of-life product materials management was a focus of Eaton Corporation engines. Caterpillar, an original equipment manufacturer, differed from Eaton on building BCT capabilities. Caterpillar felt that tracing materials, whether for remanufacturing or otherwise, would benefit from BCT capabilities and partnering with a blockchain service provider. Eaton Corporation did not pursue these BCT capabilities. In some cases, such as BASF, the firms implemented broad BCES practices. BASF introduced a BCT platform called ReciChain to improve plastic circularity including sorting, tracing, and monitoring. Traceability of materials seems to be important for building digitization and potentially localization and agility activities—a comprehensive capability from the BCES perspective that aligns well with the L-A-D capabilities for supply chain resilience.

All the organizations with lower levels, on the lower-left cell of Figure 2 are smaller companies, and from multiple industries. Interestingly there are some larger companies such as JC Penney and Eaton Corporation that are at the lower end of the BCT scale, although have some moderate CE capabilities. Their results also show lessened L-A-D practices when compared to other large organizations. JC Penney had been having difficulties financially before the crisis, while Eaton may also be viewed as a less essential company as a 1st or 2nd tier automotive industry supplier.

There is also a correlative pattern of organizations that have more capability in CE also have higher BCT capabilities—supporting the contention that joint BCES capabilities are likely to occur. It may be that innovative companies that adopt both these practices in a COVID crisis
environment can address general concerns including L-A-D efforts. Joint innovations (Choi, 2020) and tokenized coopetition (Narayan and Tidström, 2020) seem to be a real possibility and align well for future deployment of both sets of practices reinforcing each other in the post-COVID-19 phase. Agility and digitization capabilities are important for a custom product-based market environment and can prove advantageous in non-crisis times too. While efforts to establish agility and digitization capabilities are likely to continue, localization may not be easily deployable, especially for larger companies, and therefore will require decentralized control to achieve effective and long-lasting localization, including reshoring, after the crisis (Baribieri et al., 2020).

Proposition 1: Larger organizations can more effectively build internal organizational CE and BCT capabilities. Jointly implementing these capabilities—BCES—results in greater L-A-D adoption due to complementarities such as traceability of end-of-life materials. This situation is likely contingent on the industry.

4.2. A resource dependence perspective of BCES

RDT, as mentioned earlier, has two major constructs that determine how well the organization is performing on external resource dependence. These two constructs include ‘minimize their dependence on other organizations’ and ‘maximize the dependence of other organizations on themselves’ (Ulrich and Barney, 1984). In this way, organizations can make partners more dependent and create the power to build their resource capacities and build competitive advantages. We conducted a BCES resource dependence analysis of 24 case firms based on their Technological-Organizational-Environmental levels—using a TOE evaluation framework—mapped as high, medium, or low on each TOE factor. The sample of 24 companies is composed of ten large-sized firms (41.6%), nine (37.5%) medium-sized firms, and five (20.8%) small-sized firms. We observed that 20 out of 24 (83.3%) case firms had greater or equal levels of “Environmental” levels of BCT resource and capabilities than their respective
“Technological” and “Organizational” capabilities. Those 20 case firms include nine large-sized firms, five medium-sized firms, and four small-sized firms. A greater level of “Environmental” resources and capabilities than their respective “Technological” and “Organizational” capabilities represent that the firm is less dependent on other organizations and with a stronger dependency by other organizations on them.

Similarly, we analyzed the CE resource dependence across the sample of 24 case firms based on their Technological-Organizational-Environmental levels. We observed that 17 out of 24 (70.8%) case firms had greater or equal levels of “Environmental” resource and capabilities than their respective “Technological” and “Organizational” capabilities. Those 17 case firms include six large-sized firms, six medium-sized firms, and five small-sized firms. This external environmental resource dependence characteristic shows that many of the reported firms had built a stronger external supply chain power relationship overall; implying that these organizations could control CE and BCT practices to address COVID issues.

Our observation shows that several factors explain the resulting BCES capability of firms: size, BCT, and CE resource establishment – both in isolation and together. Most importantly, we observe that the size of the organization explains BCES capability development. In addition, we noted that those firms that have some form of BCT and/or CE-driven environment management strategies—typically large-sized firms—were able to achieve BCES capabilities that are fully or partially operational. For example, San Diego Gas and Electricity (SDG&E)’s active participation in the Clean Energy Blockchain Network secures its BCT resource position at a much higher level than its competitors who are yet to initiate or planning to initiate BCT adoption. As a result, SDG&E is not only able to ‘digitally’ and ‘securely’ track production and use of clean energy and their locations but also can report the earned carbon credits for government compliance.
Overall, we found that firms with higher resource dependency strength, resulting from higher Environmental (of the TOE framework) levels can more effectively build L-A-D capabilities. The higher levels of “E” than “T” and “O” dimensions imply that resource dependence strength plays a large role overall in this COVID environment in building the L-A-D capabilities. This may not always be true in other competitive situations. For example, meeting customer demands, and profitability may be dependent on internal capabilities, this traditional—non-crisis—competitive situation supports the RBV perspective for building strategic advantages and competitiveness. In this crisis, due to the unique forces playing roles and for basic organizational survival in times of crisis, having stronger resource dependence capabilities —power is necessary and observed in almost all our cases (Pfeffer and Salancik, 1978).

The L-A-D capability outcome is not just internal – this supply chain resilience capability set accumulates from the firm’s combination of managing resources and capabilities both internally and externally—an accumulative buffering and bridging set of capabilities. Further, it has an important implication for supply chain resilience and risk management. For example, in times of supply chain crises, RDT explains supporting resilience capability building. Internal capabilities are important but—given the higher focus on external context aspects of supply chain resilience—having networks and relationships with stronger resource dependency characteristics is more effective for managing crises. External resource dependence is an effective way to create L-A-D capability to achieve supply chain resiliency (Quieroz et al., 2020).

We believe that building CE and BCT expertise internally, even if they are urgent and important, might take longer than expected. As a result, firms seek external expertise for those resource requirements. There is significant uncertainty and they wish to manage their transaction costs. They do not wish to invest in specific assets while uncertainty exists. This situation can
explain why many organizations are seeking resources externally. Moreover, the length of ‘crisis’ time remains uncertain too. Thus, firms may necessarily decide to invest fully into such resource capabilities during uncertainty, rather they will rely on short term outsourcing of these capabilities or rely on external contractors to manage the process.

This short-term focus is especially true for blockchain technology, where companies, even larger ones with slack capacity and internal resources use external partners for blockchain applications. In our study, we noted exceptions in cases, such as Sonoco and New Balance, that remained invested in BCT verification and building open networks during the crisis. But in that case, holding their networks allowed them more control over their supply chain.

How does this relate to COVID? COVID is a good time to experiment. It is also a good time to restructure a firm’s product-market matrix by applying product deletion strategies that have both CE and BCT relationships (Zhu et al., 2018). It is difficult to make strategic decisions in this short-term environment.

Proposition 2: Firms with high resource dependence—less control—of external agents have more difficulty building BCES capabilities.

Proposition 2a: Stronger external partnerships can more effectively implement L-A-D—and support supply chain resilience.

Proposition 2b: Short-term partnerships in times of crisis can offer the potential for L-A-D supply chain resilience.

4.3. L-A-D as post-pandemic supply chain outcomes

In our study, we seek to determine whether the resources and capabilities from BCES influence L-A-D capability development. We can term this related capability development as a tiered or cumulative capabilities evaluation. Additionally, it could be viewed as a buffering and bridging capability relationship. The basic question we ask in this section is whether these tiered capabilities relate to each other. We believe that the foundational CE and BCT resources and
capabilities do lead to L-A-D outcomes to aid in the COVID crisis—as was discussed in our background review and more general observations.

This question brings to the forefront how certain foundational capabilities are needed to build additional broader capabilities. For example, quality performance needs quality capabilities and these capabilities can be buttressed by other organizational or supply chain resources and capabilities. To be able to lead to quality capability we would need other capabilities such as trained workers, quality technology, and quality management systems.

In this case, we argued that greater BCT and CE capabilities result in greater L-A-D—or supply chain resilience—capabilities. The pattern we would need to observe is whether there is greater adoption of L-A-D practices with greater adoption of BCES capabilities and practices. In an examination of firm BCES resource positions with their respective L-A-D status (see Figure 2), we note that the size of boxes (representing the size of the firm) generally become larger and greener (i.e., high L-A-D) as they move towards the high CE and high BCT resources and capabilities grid. This observation essentially means that larger firms and/or firms with higher levels of BCES capabilities have pursued the task of building L-A-D capabilities to counter supply chain risks from the COVID crisis.

Although there are some minor anomalies — such as Roche having a light green shade but up in the upper right grid — the pattern is relatively clear. This is observed across different industries as well. Although additional industrial supply chain nuances are discussed in the next section. Thus, we can safely arrive at our third proposition. Patterns across company size are not clear, given that some larger organizations, such as Walmart, are not as interested in using BCT and CE capabilities to build L-A-D capabilities during the COVID crisis as would be true of some smaller companies such as SDG&E or Sanofi.
Proposition 3: Greater BCT and CE capabilities relate to greater L-A-D capability. This pattern is true across industries although not consistently true across the organizational size.

4.4. Influence of industry type

In our previous sections, we alluded to some similarities and differences in industries. We further evaluate industry type correlates with BCES and L-A-D in this section. In our study, case firms represent several industries. The study sample includes service and goods industries and a series of more specific classifications based on SIC—standard industry classification—code. Pharmaceuticals, automotive, plastics, and fast-moving consumer goods represent industries within the goods manufacturing sector. Service sectors include public utilities, such as the United States Postal Service (USPS), consumer retail sellers, consulting, real estate, and transportation.

Clearly, the COVID crisis influenced industries in different ways. We noted that industry responses differ by industry due to regulatory policies or expectations of operations from their end-customers and stakeholders. For example, some industries and their supply chains may be viewed as essential, while others may be less so. Given the relatively large variety of industries and smaller sample size, we decided to take consideration of patterns based initially on a more general industry grouping. Accordingly, we grouped the case firms into two groups: 15 cases belonged to ‘goods’ orientation and nine cases belonged to ‘service’ orientation.

Overall, we found that services have medium to low adoption of BCES practices. The only services company that seems to be higher in both dimensions is SDG&E, which is a medium-sized electric services company. There are at least two explanations that may exist here. First, services companies typically do not have core material flows that would require capturing materiality, and thus CE type practices—excluding sharing platform — seem irrelevant due to lack of solid materials. Second, the lack of tangible goods and materials, and a more intangible
set of services and direct relationships with people means that traceability and transparency of goods flow are not as necessary—which are offered by BCT capabilities. Services that require tracing, such as the USPS and Maersk—a transportation services provider—do have a much higher BCT requirement.

In our study, we noted that service industry firms are typically closer to end-consumers, whether they cater to another industry or individual consumers. Industrial services companies such as Maersk, SDG&E, and USPS, each have greater BCT, meaning that their supply chains can more effectively achieve greater L-A-D with BCT technology. Walmart, JCPenney, and FLE—which are individual consumer services—have less to moderate the need for BCT and CE practices to achieve L-A-D.

One interesting phenomenon appears with the automotive industry supply chain. In this case, we arguably have five companies in this industry, Toyota, Caterpillar, Eaton, GRI, and Pine Electronics. These are all in the manufactured goods industry but represent various tiers of the automotive supply chain. The OEMs are Toyota and Caterpillar. Eaton and GRI would be considered first-tier suppliers. While Pine Electronics is, at best, a second-tier supplier. The pattern here is clear, the further upstream in the supply chain a company, the less they have of either practice to support L-A-D and the less L-A-D they need.

Yet for the retail goods industry, with the larger players further downstream being the retail outlets such as Walmart and JCPenney, the opposite is seeming to be true. Suppliers to the retail outlets for individual consumer sales, include New Balance, Tyson, JB Smucker, and the pharmaceutical manufacturers. The further down the supply chain it goes, although it is only about two tiers, the more the BCES resources are used to achieve L-A-D.
Thus, there are potentially very different general observations that can be made, and overall industry type and sector, play significant roles in the adoption of BCES resources for L-A-D.

Proposition 4: Industry type effects use and structure of the circular economy and blockchain technology usage for L-A-D adoption.

Proposition 4a: Service industries are less likely than goods industries to adopt BCT and CE practices at high levels to use L-A-D capabilities to build supply chain resilience.

Proposition 4b: Downstream—versus upstream—Automotive and industrial goods companies are more likely to adopt BCT and CE practices and resources to build L-A-D capabilities for supply chain resilience.

Proposition 4c: Upstream—versus downstream—consumer goods companies are more likely to adopt BCT and CE practices and resources to build L-A-D capabilities for supply chain resilience.

5. Discussion and implications

The experiences from the COVID-19 crisis provide numerous insights for building supply chain resilience and practice—in times of crisis and also, in *normal* periods. The issue of which practices or capabilities—BCES and L-A-D—are adopted or further developed after return to normalcy requires study. Given the current observations and findings, we observe that there are some significant relationships within and between organizational and external environmental capabilities to support supply chain resilience. An initial resulting finding is an integrated framework of the study’s propositions—as shown in Figure 3.

----- Insert Figure 3 about here -----

5.1. Theoretical implications

One outcome of the crisis and based on our exploratory findings is that BCT and CE barriers to adoption (Kouhizadeh et al., 2021; Jaeger and Upadhyay, 2020) are likely to be
reduced. This supposition needs careful investigation. The broader research context is that crises may alter the organizational and supply chain processes for the long run and institutionalize various practices that were not considered immediate and needed previously—learning and adoption are likely to occur (Ketchen et al., 2014). These changes are important to study and to project additional future changes along with theory building along with the diffusion of these innovations.

One potential theoretical insight is RDT is a better perspective than RBV for understanding supply chain resiliency evaluation in times of crisis. We also observe that TOE can be an effective construct to evaluate RDT and RBV capabilities. This insight can help us understand the types of organizational capabilities. TOE can help in discriminating between RBV and RDT construct evaluation.

We introduced four general research propositions—with commensurate research questions based on this exploratory abductive research. These questions and propositions warrant additional investigation. We observe that BCES is characterized by both internal organizational capabilities and external resource-dependent capabilities. These resources can represent both buffering and bridging strategies (Manhart and Summers, 2020) leading to L-A-D capabilities. The joint RBV-RDT perspective requires greater maturity and study. This cumulative capability perspective—building internal and then external capabilities—can be an important foundation to continue this theoretical integration.

Creating capabilities to effectively manage supply chains in pandemics like COVID-19 require investments (Juttner and Maklan, 2011). Organizations are likely to be more willing to make these investments for resilience which improves their long-term viability and profitability. Resource sufficiency—either possessed internally or found externally through purchase or partnerships—is necessary to avoid disruptions and will likely improve supply chain resilience.
and performance, especially if CE practices are further adopted. Research into the justification of such investments and capabilities is needed.

Organizations should take these pandemic events as opportunities for experimentation and improvement; both internally and externally in terms of capabilities (Akkermans and van Wassenhove, 2017; Choi, TM, 2020; DesJardine et al., 2019). The current situation is an uncertain environment and can only provide tentative organizational and supply chain insights. In these extraordinary times, when a supply chain tsunami hits, both BCT and CE concepts can gain insights from this crisis. Companies may wish to implement and study, at least at the pilot level, how both resilience and sustainability can improve their competitive position in this extraordinary environment and learn what can exist in normal periods. If they cannot develop and implement these practices alone, they can and should seek external support and partnerships for assistance in adding the capabilities.

As an example, cashless and card-less transaction systems for supply chain finance can be a great opportunity in the COVID crisis because it does not require a material that is contaminated (e.g. fiat money), and personal transactions (Du et al, 2020). This type of effort can be implemented for non-competitive reasons but can provide competitive opportunities. Even colleges and universities transitioning to on-line course delivery and going paperless in class is another example of the new COVID-19 digitalization. Such research on the advantages and disadvantages of digitization can be found in this crisis and its aftermath.

5.2. Practical and managerial implications

A major issue that supply chain managers face during crises is short and long-run responses from technological, organizational, and environmental dimensions. The COVID-19 crisis brings in a multitude of managerial dilemmas. Our study offers several implications for building supply chain resilience and handling supply chain disruptions. Our study provides
insights for managing a pandemic crisis environment. It provides lessons for identifying the characteristics and requirements for building a resilient supply chain.

First, and foremost, the study presents supply chain managers with case examples of CE and BCT advances in different industries. It also offers insight into L-A-D capability examples for building supply chain resilience. Managers might find immediate relevance of our case findings with their supply chain issues across industries. Our study reveals the need for BCES capabilities to generate unique L-A-D capabilities across industries. In the food industry, BCES capabilities help Tyson Foods to resolve meat supply chain bottlenecks by building a multi-layered supplier communication system to avoid wastage and logistical blockages. Such demonstrations could guide managers on how to strategize their BCT and CE efforts to meet operational and supply chain resiliency according to their industry expectations.

Second, our study helps managers to develop long-vs-short term investment strategies. Creating capabilities to effectively manage supply chains in crises like COVID-19 requires investments. Organizations are likely to be more willing to make these investments for resilience which improves their long-term viability and profitability. Resource sufficiency, however, either possessed internally and found externally through purchase or partnerships if necessary to avoid disruptions, is likely to improve their supply chain performance, particularly if CE practices are further adopted in conjugation with BCT (Kouhizadeh, et al., 2021).

Third, we assert that organizations should take these pandemic events as opportunities for innovation, experimentation, and improvement (Choi TM, 2020). Companies may wish to implement and study, at least at the pilot level, how both resilience and sustainability can improve their competitive position. Practical examples of learning exist with Walmart kiosks and Florida Laundry Express cases, cashless and card-less transaction systems can be a great
opportunity in response to COVID because it does not require a material that is already contaminated (e.g. fiat money), and personal transactions.

Fourth, our study offers a simple RBV and RDT based theoretical model to improve managerial decisions about critical resources and capabilities that are either already possessed or need to be acquired from the environment. Managers can objectively use our proposed RBV-RDT based BCES and L-A-D integrated model as a guide to identify and organize BCES capabilities needed for developing L-A-D capabilities.

Fifth, if firms intend to provide greater resilience to their supply chain, building BCES capabilities can help them achieve this goal. Not all industries will benefit or approve of development in the same way, so companies need to also consider how industrial partners and norms will affect their decisions. In this case, for our sample, larger companies who typically have greater resources to bear can benefit from these activities. These limitations and concerns should also be taken into consideration by managers and organizations.

Finally, the socio-economic and socio-environmental outcomes derive from how organizations may be able to respond effectively to various community and social needs by adopting BCES practices. For example, localizing supply chains and providing agility in offering opportunities to local communities is one underlying aspect that BCES and L-A-D in providing resources and jobs to the community; especially when jobs or goods are not available otherwise. While these practices can provide opportunities for organizations to improve socio-economic performance in times of crisis, L-A-D, especially localization can improve the sustainability of supply chains given that travel distances and inventory in the pipeline are lessened. Shorter pipelines of materials mean less inventory (that is, less waste and storage energy would be needed), improved resource utilization, and fewer pollutants. Transportation requirements will not be as extensive saving fuel resources and pollutant emissions as well. CE
practices also contribute to lessening waste and energy usage for organizations and communities. Thus, environmental sustainability along with social sustainability benefit from BCES and L-A-D.

We expect that the conceptual and qualitative analysis provides insightful implications for practitioners to realize their BCT and CE efforts to build supply chain resiliency according to their industry characteristics.

6. Conclusion

This paper investigates how joint blockchain technology and circular economy principles and capabilities (BCES) can offer ways to build supply chain resilience. We analyzed the impacts of an unpredictable event that causes a tsunami (Akkermans and van Wassenhove, 2017) disruption in a supply chain; and what is needed to build resiliency. Specifically, localization, agility, and digitization (L-A-D) capabilities were evaluated concerning BCES. This research paper is significant and introduces a new framework that could be utilized to assess the efficacy of building supply chain resilience. There are no previous studies that have investigated supply chain resilience by using integrated L-A-D and BCES. This relationship is important because it addresses issues related to supply resilience and disruption. Using an abductive research approach, we used literature and published secondary sources to investigate COVID-19 disruption and supply chain resilience responses through BCES and L-A-D capabilities.

A sample of 24 case companies were classified using a technology, organization, and environment (TOE) framework for capabilities evaluation. This exploratory study shows there are significant patterns on the level of adoption of BCT and CE resources and L-A-D capability development—based on COVID-19 pressures. We found a clear pattern that the greater the BCT and CE resources and capabilities the greater the L-A-D adoption levels. Organizational size and
industry had some relationships to the patterns as well; adoption patterns for L-A-D varied across industries. In some industries, downstream firms seemed to adopt supply chain resilience factors more than upstream firms; in other industries the opposite was true. This is an important observation requiring additional research.

Theoretically using the resource-based view of the firm and resource dependency theory we find a complementary and synergistic sequential capability development in response to COVID-19 in the supply chain, with implications for broader supply chain resilience—this expands the research on potential buffering and bridging capabilities (Manhart et al., 2020). This paper has made several significant contributions in the field, extending the theoretical and methodological analysis to better understanding the organization’s capabilities when faced with supply chain disruptions. Theoretically, we also linked TOE to RBV and RDT theory. We found that TOE provides an appropriate classification and theoretical framework to help understand supply chain capability development for resilience in times of crises and disruption. Our review of the existing literature shows that previous research has not focused on or developed such tools for analysis.

This study has significant contributions, as it provides insights for supply chain managers to improve supply chain function, risk management, and resilience, particularly under disruptive events such as COVID-19. One of the limitations of this study was the use of a small sample of companies which amounted to 24 companies and we believe that more insights could be offered for future research with larger samples and quantitative results to extend this research for supply chain functioning. We are confident that future research, utilizing more data, will re-emphasize our finding that industry, size, and type matters when developing organizational resilience while faced with sudden supply chain disruptions.
This research is exploratory and emerging as is the COVID-19 crises. But the 24 company—and their supply chain—responses to the COVID-19 pandemic helped to highlight post-COVID-19 supply chain lessons. Our research uses the blockchain and the circular economy nexus of capabilities, both of which show current and future potential to improve supply chain function, not just in times of crisis. This study took a unique approach to analyze the organizational behavior in supply chain activities and identifies some of the important factors that can contribute to the firm’s improved capabilities.

Future research should also segment the larger samples by industry and stage of the life cycle to determine if there are unique modifications and improved functioning based on industry or supply chain stage. Research is needed in the various areas of our study individually including an additional study on blockchains use and efficacy in improving supply chains as well as separate research to identify the circular economy benefits. More examples of localization, agility, and digitization are necessary, and this research should identify the pros and cons of firms developing their strengths in these areas versus working with partners to achieve similar benefits. Overall, the COVID-19 crisis, although with terrible and deadly outcomes, provides organizations and their supply chains lessons in how to effectively ride out a tsunami event. We feel there is much to learn from this crisis for both future crises and normal supply chain operations.

Acknowledgments

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
References

Figures

![Fig. 1. Research Methodology adapted from Nandi, Nandi, et al. (2020)](image-url)
Fig. 2. Critical BCT and CE Resources/Capabilities of Firms by position, size, and L-A-D status
Fig. 3. Theoretical Research Framework
Table 1. Selected Cases: Industries and Sources.

<table>
<thead>
<tr>
<th>Industry by SIC</th>
<th>Company Name</th>
<th>2019 revenue (in millions)</th>
<th>Patent(s)</th>
<th>Research article</th>
<th>Press, news article</th>
<th>Corporate report</th>
<th>Supporting source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmaceutical Preparations</td>
<td>Roche</td>
<td>$63,400 (Large)</td>
<td>-</td>
<td>-</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Sanofi</td>
<td>$42,634 (Medium)</td>
<td>-</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Electronic & Other Electrical Equipment (No Computer Equip)</td>
<td>Pine Electronics</td>
<td>$3 (Small)</td>
<td>-</td>
<td>-</td>
<td>√</td>
<td>-</td>
<td>√</td>
</tr>
<tr>
<td>Poultry Slaughtering and Processing</td>
<td>Tyson Foods</td>
<td>$42,405 (Large)</td>
<td>-</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Motor Vehicles & Passenger Car Bodies</td>
<td>Toyota</td>
<td>$272,031 (Large)</td>
<td>-</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Tires & Inner Tubes</td>
<td>GRI - Sri Lanka</td>
<td>$5 (Small)</td>
<td>-</td>
<td>-</td>
<td>√</td>
<td>-</td>
<td>√</td>
</tr>
<tr>
<td>Specialty Cleaning, Polishing and Sanitation Preparations</td>
<td>Clorox</td>
<td>$6,214 (Medium)</td>
<td>-</td>
<td>-</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Coin-Operated Laundries and Dry cleaning</td>
<td>Fl. Laundry Express</td>
<td>- (Small)</td>
<td>-</td>
<td>-</td>
<td>√</td>
<td>-</td>
<td>√</td>
</tr>
<tr>
<td>Department Stores</td>
<td>Walmart</td>
<td>$514,400 (Large)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>JC Penney</td>
<td>$10,720 (Large)</td>
<td>-</td>
<td>-</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Computer Processing and Data Preparation and Processing Services</td>
<td>Edmunds</td>
<td>$212 (Small)</td>
<td>-</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Management Consulting Services</td>
<td>Grant Thornton</td>
<td>$1,951 (Medium)</td>
<td>-</td>
<td>-</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Real Estate Agents & Managers (For Others)</td>
<td>Simon Property Group</td>
<td>$5,658 (Medium)</td>
<td>-</td>
<td>-</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Not elsewhere classified</td>
<td>Pacific Island Countries & Territories (PICTs)</td>
<td>- (Medium)</td>
<td>-</td>
<td>-</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Industry</td>
<td>Company</td>
<td>Revenue</td>
<td>Size</td>
<td>Score 1</td>
<td>Score 2</td>
<td>Score 3</td>
<td>Score 4</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>----------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Electric Services</td>
<td>SDG&E</td>
<td>$2,199</td>
<td>Medium</td>
<td>-</td>
<td>-</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Transportation & Public Utilities</td>
<td>USPS</td>
<td>$71,100</td>
<td>Large</td>
<td>√</td>
<td>-</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Arrangement of Transportation of Freight and Cargo</td>
<td>Maersk</td>
<td>$38,890</td>
<td>Large</td>
<td>-</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Construction and Mining (except Petroleum) Machinery and Equipment</td>
<td>Caterpillar</td>
<td>$53,800</td>
<td>Large</td>
<td>-</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Industrial and Commercial Machinery and Equipment</td>
<td>Eaton</td>
<td>$21,400</td>
<td>Large</td>
<td>-</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Rubber and plastic footwear</td>
<td>New Balance</td>
<td>$4,500</td>
<td>Medium</td>
<td>√</td>
<td>-</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Food Preparations, Not Elsewhere Classified</td>
<td>JM Smucker</td>
<td>$7,840</td>
<td>Medium</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Plastics Products, Not Elsewhere Classified</td>
<td>Sonoco</td>
<td>$5,374</td>
<td>Medium</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Plastics Materials and Basic Forms and Shapes</td>
<td>Imaginative Materials & Design</td>
<td>$0.34</td>
<td>Small</td>
<td>-</td>
<td>-</td>
<td>√</td>
<td>-</td>
</tr>
<tr>
<td>Chemicals and Chemical Preparations, Not Elsewhere Classified</td>
<td>BASF</td>
<td>$69,990</td>
<td>Large</td>
<td>-</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>
Table 2. Identification Framework for Data Collection and Data Evaluation

<table>
<thead>
<tr>
<th>Part 1: Data Collection</th>
<th>Main source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: What is the main supply chain disruption event resulting from COVID-19 that the articles are referring to?</td>
<td>CIDRAP, others</td>
</tr>
<tr>
<td>Step 2: Does the supply chain disruption event corroborate with the theorization of L-A-D? If Yes, include, and explain.</td>
<td>Sarkis et al. (2020); Hosseini et al. (2020); Wang, et al. (2019); Hendry et al. (2019); Bugert and Lasch (2018); Qazi et al. (2018)</td>
</tr>
<tr>
<td>Step 3: Do those articles refer to a firm (or more firms) that have been impacted by COVID-19?</td>
<td>--</td>
</tr>
<tr>
<td>Step 4: Identify the firm name, Industry by SIC code, size by revenue, and list data sources to evaluate BCT and CE resources and capabilities</td>
<td>USSEC; Annual reports; Press releases, research articles, corporate reports, patent database, industry reports</td>
</tr>
</tbody>
</table>

Part 2: Data Evaluation

<table>
<thead>
<tr>
<th>Step 5: Identification of the Resource-based orientation for the firm’s BCT resources and capabilities.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• From a Technological-Organizational-Environmental perspective, what are the critical BCT “resources and capabilities” that the organization and its stakeholders' currently possess?</td>
</tr>
<tr>
<td>• Interpret the TOE-levels of such BCT resources/capabilities as Low/Medium/High. State your reasoning.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6: Identification of the Resource-based orientation for the firm’s CE resources and capabilities.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• From a Technological-Organizational-Environmental perspective, what are the critical CE “resources and capabilities” that the organization and its stakeholders' currently possess?</td>
</tr>
<tr>
<td>• Interpret the TOE-levels of such CE resources/capabilities as Low/Medium/High. State your reasoning.</td>
</tr>
<tr>
<td>Step 7: Identification of the Resource dependence orientation for the firm’s BCT resources and capabilities.</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>• From a Technological-Organizational-Environmental perspective, what are the critical BCT “resources and capabilities" that the organization needs to acquire from its environment?</td>
</tr>
<tr>
<td>Pfeffer and Salancik (1978); Bharadwaj (2000); Schmidt and Wagner (2019)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 8: Identification of the Resource dependence orientation for the firm’s CE resources and capabilities.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• From a Technological-Organizational-Environmental perspective, what are the critical CE “resources and capabilities" that the organization needs to acquire from its environment?</td>
</tr>
<tr>
<td>Pfeffer and Salancik (1978); Bharadwaj (2000); Blomsma et al. (2019)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 9: Interpretation of TOE positions of the firm’s BCT resources and capabilities. (High/Medium/Low)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baker (2012); Kouhizadeh et al. (2020);</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 10: Interpretation of TOE positions of the firm’s CE resources and capabilities. (High/Medium/Low)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baker (2012); Kouhizadeh et al. (2020);</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 11: Interpretation of the likely L-A-D outcomes in the firm’s supply chain because of BCES adoption.</th>
</tr>
</thead>
</table>
| • What are the likely Localization outcomes?
• What are the likely Agility outcomes?
• What are the likely Digitization outcomes? |

<table>
<thead>
<tr>
<th>Step 12: Interpretation of the strength of L-A-D outcome. (Very High/High/Moderate/Less/None)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarkis et al. (2020)</td>
</tr>
</tbody>
</table>
Appendix

Appendix 1. Supply chain disruptions, related BCT and CE resources and capabilities, and their T-O-E levels

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Supply chain disruption event</th>
<th>Critical BCT resources that are possessed by the firm (RBV)</th>
<th>Critical CE resources that are possessed by the firm (RBV)</th>
<th>Critical BCT resources that the firm is dependent on the external environment (RDT)</th>
<th>Critical CE resources that the firm is dependent on the external environment (RDT)</th>
<th>TOE levels of BCT and CE (L/M/H)</th>
<th>Localization</th>
<th>Agility</th>
<th>Digitization</th>
<th>L-A-D levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roche</td>
<td>Short-supply of coronavirus testing devices ordered</td>
<td>Genentech is piloting an “interoperable system” to track products along the supply chain</td>
<td>Implemented waste management practices globally</td>
<td>Partnership with MediLedger for DSCSA requirement</td>
<td>Government approvals to implement new CE practices, e.g., collection and reuse/recycling of used testing gear equipment</td>
<td>BCT (T-O-E): M-H-H, CE (T-O-E): H-H-H</td>
<td>Collection and repurposing of used testing gears near hospitals</td>
<td>Material efficiency, delivery efficiency</td>
<td>Tracking of testing gears components for the entire lifecycle</td>
<td>High</td>
</tr>
<tr>
<td>Sanofi</td>
<td>Countering COVID-19 vaccine distribution bottlenecks in the supply chain</td>
<td>Invested in Curisium to develop a BCT-based patient-centered, value-based contract system for customers, providers, and associated life science firms</td>
<td>Applies green chemistry, waste management practices, and material recovery techniques</td>
<td>Due to the complexity long vaccine supply chain, Sanofi will face challenges in integrating its storage and packaging components, cold-chain transit, and shipping partners.</td>
<td>Collaborations for collection of vaccine equipment that are minimally affected by sterilization (e.g., silicone elastomers-made catheters, drains, shunts, etc.) and metal surgical tools.</td>
<td>BCT (T-O-E): M-M-H, CE (T-O-E): H-H-H</td>
<td>Local collection/repurposing and inventory stocking will reduce shipping delays</td>
<td>Agility outcome include building efficiencies along the supply chain</td>
<td>Increased vaccine supply visibility</td>
<td>Very High</td>
</tr>
<tr>
<td>Pine Electronics</td>
<td>Re-routing of offshore-based manufacturing supply chains</td>
<td>No BCT or new technology-based activities/linkages are found in its current offshore (China-based)</td>
<td>Despite possibilities of remanufacturing and resource sharing, no CE-based activities are found in its contract manufacturing scope</td>
<td>While reshoring and nearshoring contract manufacturing suppliers seems far from realizing, building BCT-based integrative capabilities with its</td>
<td>Although technological and environmental support for CE exists, its managerial interest to pursue any</td>
<td>BCT (T-O-E): L-L-L</td>
<td>Not much scope for localization, given its offshore-based contract</td>
<td>Making contract manufacturingscope more agile will positively influence</td>
<td>Digitization of material or product flow along the supply chain is not an</td>
<td>No</td>
</tr>
<tr>
<td>Company Name</td>
<td>Supply chain disruption event</td>
<td>Critical BCT resources that are possessed by the firm (RBV)</td>
<td>Critical CE resources that are possessed by the firm (RBV)</td>
<td>Critical BCT resources that the firm is dependent on the external environment (RDT)</td>
<td>Critical CE resources that the firm is dependent on the external environment (RDT)</td>
<td>TOE levels of BCT and CE (L/M/H)</td>
<td>Localization</td>
<td>Agility</td>
<td>Digitization</td>
<td>L-A-D levels</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---------------------------------</td>
<td>-------------</td>
<td>--------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Tyson Foods</td>
<td>Disruption in meat supply chain</td>
<td>manufacturing scope</td>
<td>current offshore-based suppliers as well as customers would bring materials and products traceability</td>
<td>CE activities seems limited.</td>
<td>CE activities seems limited.</td>
<td>L-L-L</td>
<td>manufacturin scope</td>
<td>its supply chain performanc e</td>
<td>immediate requirement</td>
<td></td>
</tr>
<tr>
<td>Toyota</td>
<td>Ripple effects in the automotive market and supply chain</td>
<td>In partnership with FoodLogiQ, Tyson is exploring BCT in the supply chain to develop information-sharing capabilities for its consumers</td>
<td>Applies food recycling and upcycling measures to reduce food waste. It launched the ‘Yappah’ brand of chicken crisps snacks that uses upcycled trimmings of chicken breasts, tapioca flour, vegetable purees of juicing leftover, and melted barley leftover after beer brewing</td>
<td>For BCT adoption along the meat supply chain (farmers to meat processing plants to consumers), it needs to either invest heavily in technology or work with govt to mandate BCT in the food industry</td>
<td>The meat supply chain has multiple choking points. E.g., any form of hazard can temporarily shut-down a meat processing plant, or kill animals, or cut-off logistics, or damage product backs up in cold storage. While large scale CE adoption can mitigate supply chain disruptions, the market currently lacks maturity for recycled/upcycled products</td>
<td>BCT (T-O-E): M-M-H</td>
<td>CE (T-O-E): M-H-H</td>
<td>More local cattle ranchers/gro wers and slaughtering/ processing facilities at local and regional levels</td>
<td>Distributed meat sourcing and processing supply chains are likely to improve agility in the meat supply network</td>
<td></td>
</tr>
</tbody>
</table>

Tyson and Toyota are exploring BCT in their respective supply chains to develop information-sharing capabilities for their consumers and improve their supply chain positions. Tyson plans to launch a new brand of chicken crisps snacks that uses upcycled trimmings of chicken breasts, tapioca flour, vegetable purees of juicing leftover, and melted barley leftover after beer brewing. Toyota is exploring BCT in its supply chain to develop information-sharing capabilities for its consumers and improve its supply chain position. Toyota’s CE practices are self-sufficient to help improve its supply chain position. Therefore, it must continue working on enabling CE practices for its suppliers. Toyota’s innovation lab is gradually advancing its BCT-based mobility environment in which buyers and suppliers can connect more openly and yet securely with the companies that provide them with services such as customer and technologically, material, and resource efficiency plans have always remained in Toyota’s production system. Given its sustainability initiatives, CE practices are available in alternate forms. Also, Toyota is piloting its “Car-to-Car” recycling initiative of after-market cars for resource recycling, reusing.
<table>
<thead>
<tr>
<th>Company Name</th>
<th>Supply chain disruption event</th>
<th>Critical BCT resources that are possessed by the firm (RBV)</th>
<th>Critical CE resources that are possessed by the firm (RBV)</th>
<th>Critical BCT resources that the firm is dependent on the external environment (RDT)</th>
<th>Critical CE resources that the firm is dependent on the external environment (RDT)</th>
<th>TOE levels of BCT and CE (L/M/H)</th>
<th>Localization</th>
<th>Agility</th>
<th>Digitization</th>
<th>L-A-D levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRI – Sri Lanka</td>
<td>A slow restart of tire manufacturing plants after lock-down. Contrastingly, GRI was granted special permission to keep manufacturing tires even under lockdown conditions</td>
<td>Vehicle verification, supply chain monitoring, digitization of assets, and financing options</td>
<td>Recycled materials, and making new products from recycled materials</td>
<td>Closely with industry stakeholders to stabilize BCT norms</td>
<td>From used-batteries.</td>
<td>BCT (T-O-E): L-L-L CE (T-O-E): M-M-H</td>
<td>Local production of rubber material will boost quality and avoid wastage. Cut the length of the supply chain and cost of procurement</td>
<td>Proactive BCT-based CE practices will support production scheduling challenges</td>
<td>Recording, historicity, data-driven decision making, forecasting</td>
<td>Less</td>
</tr>
<tr>
<td>Company Name</td>
<td>Supply chain disruption event</td>
<td>Critical BCT resources that are possessed by the firm (RBV)</td>
<td>Critical CE resources that are possessed by the firm (RBV)</td>
<td>Critical BCT resources that the firm is dependent on the external environment (RDT)</td>
<td>Critical CE resources that the firm is dependent on the external environment (RDT)</td>
<td>TOE levels of BCT and CE (L/M/H)</td>
<td>Localization</td>
<td>Agility</td>
<td>Digitization</td>
<td>L-A-D levels</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>---------------------------------</td>
<td>--------------</td>
<td>---------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Clorox</td>
<td>Soaring demand for disinfecting wipes and short supply of polyester spunlace (raw material)</td>
<td>BCT adoption has less to do with Clorox’s raw material shortage. Currently, Clorox is not focusing on any BCT development</td>
<td>Clorox has joined Terracycle’s Loop e-platform that reduced packaging waste by delivering products directly to customers.</td>
<td>To secure raw materials from its suppliers, the BCT-based mindset is far from real</td>
<td>To advance CE initiatives further, new investments for product innovation and environmental permits are required</td>
<td>BCT (T-O-E): L-L-M CE (T-O-E): M-M-L</td>
<td>Unclear; Adoption of recycled packaging will boost local employment scope</td>
<td>Unclear; Shipment tracking will make distribution more agile</td>
<td>Unclear; Support data-driven decision making</td>
<td>Normal</td>
</tr>
<tr>
<td>Florida Laundry Express</td>
<td>Coin shortage is hampering coin-operated laundromats used by lower-to-middle income households</td>
<td>Only a handful of washing/drying machines currently have coinless and/or smartphone app-based payment facility, but this situation can be upgraded cost-effectively</td>
<td>Machines that offer electronic payment system are indirectly helping the government from minting coins (a rare earth metal)</td>
<td>Need strong technological push from the owner, even though organizational requirement and environmental support exist</td>
<td>Banks can incentivize (penalize) laundromats for depositing more coins during the crisis (normalcy)</td>
<td>BCT (T-O-E): L-L-H CE (T-O-E): L-L-H</td>
<td>Unclear; Coin-less machines are not worthy of getting stolen, thus allow to prove better service to users</td>
<td>Operational efficiency factors, such as better maintenance</td>
<td>Support natural resource preservation/conservation in local communities</td>
<td>No</td>
</tr>
<tr>
<td>Walmart</td>
<td>Slow minting of coins is forcing stores to adopt strategies such as contactless payment and rounding up for cash payments as "donations"</td>
<td>(a) Electronic payment option is already available at all payment kiosks, (b) provides free Wi-Fi and aisle guidance to facilitate app-based “in-store” shopping, (c) can transfer coin credits as electronic credits</td>
<td>App-based shopping allows customers to deliver orders directly at their homes, thus reducing packaging material and energy costs resulting from inventorizing at store</td>
<td>Create initiatives to promote coinless transactions, such as “donations” for electronization projects within communities</td>
<td>Create initiatives to promote coinless transactions, such as "donations" for sustainability projects for localities</td>
<td>BCT (T-O-E): M-H-H CE (T-O-E): H-H-M</td>
<td>Support natural resource preservation/conservation in local communities</td>
<td>Improve self-checkout times; decrease virus contaminati on; reduce coin material consumptio n</td>
<td>Apart from operational advantages, donations by individuals can be shared with tax authorities</td>
<td>Normal for electronic payment</td>
</tr>
<tr>
<td>Company Name</td>
<td>Supply chain disruption event</td>
<td>Critical BCT resources that are possessed by the firm (RBV)</td>
<td>Critical CE resources that are possessed by the firm (RBV)</td>
<td>Critical BCT resources that the firm is dependent on the external environment (RDT)</td>
<td>Critical CE resources that the firm is dependent on the external environment (RDT)</td>
<td>TOE levels of BCT and CE (L/M/H)</td>
<td>Localization</td>
<td>Agility</td>
<td>Digitization</td>
<td>L-A-D levels</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>---------------------------------</td>
<td>--------------</td>
<td>--------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Edmunds</td>
<td>Spike in used vehicles price due to factors such as delays in new vehicle deliveries, lesser scope to negotiate with a new car dealer (inventory shortage/seller market phenomena)</td>
<td>Currently, Edmunds has no BCT plans, but it has technology to aggregate “for sale” data of used cars by region, by sources, etc. Edmunds has established a network with auto-industry</td>
<td>As a trusted portal, it helps people by used car sales, which in turn favors CE (such as product circularity, curb demand for new cars)</td>
<td>As a fringe player, Edmunds can integrate BCT adoptions by partners for services such as tracking and verifying automotive parts</td>
<td>To promote BCT adoption, Edmunds can organize discounts from BCT-based financiers for its users.</td>
<td>BCT (T-O-E): M-H-H</td>
<td>CE (T-O-E): M-H-H</td>
<td>Local selling and buying culture will help to create a new local vehicle supply chain system (e.g., tax, repair shops)</td>
<td>Repairs and maintenence tasks can be handled more efficiently</td>
<td>Bring relevancy to local drivers from the vehicle’s history of maintenance data being recorded.</td>
</tr>
<tr>
<td>Grant Thornton</td>
<td>Travel restriction is making physical audits difficult to conduct</td>
<td>Currently, Grant Thornton is using collaboration tools, video conferencing, and more regular communication. No mention of BCT activities in current virtual operations</td>
<td>The virtual audit practice is reducing its auditors to travel to customer sites; thus, it helps in saving gas (natural resource)</td>
<td>Can plan to apply BCT to provide better scrutiny of supplier records that will enable the company to perform virtual audits in the future. Virtual and secured sharing of anonymized data in the supply chain is yet another scope to advance auditing automation</td>
<td>Virtual auditing service depends on satisfaction levels of auditee firm’s physical auditing requirements</td>
<td>BCT (T-O-E): L-M-L</td>
<td>CE (T-O-E): M-L-L</td>
<td>Enabling companies to connect with local auditors to perform those auditing services that cannot be performed virtually.</td>
<td>Efficiency in auditing support; Reduce travel-based time redundancy in auditing requirement s of the auditee firm</td>
<td>Enable auditing firms to analyze data virtually in a more systematic way that are related to material inflows, supply outflows, labor, operations, or other factors</td>
</tr>
<tr>
<td>Simon Property Group</td>
<td>Large retail spaces are getting replaced as distribution hubs</td>
<td>Simon is currently not having any BCT involvements in its current operations. However, few SPG malls have bitcoin ATMs</td>
<td>Has implemented resource conservation technologies in its retail space properties such as EV charging stations; Can create scalable designs of retail spaces for new customers, new brand product; Claims to create economic impact</td>
<td>Considering the disruption vulnerability such as COVID-19, Simon can co-opt and integrate BCT based banking system from its prospective customers, such as Amazon.</td>
<td>Skilled to implement CE projects as needed; Being a publicly listed real estate company, it is well position to raise capital as needed</td>
<td>BCT (T-O-E): L-L-M</td>
<td>CE (T-O-E): M-M-M</td>
<td>Shift in real estate leasing model (i.e., creating fulfillment centers for Amazon and alike), is likely to</td>
<td>Agility outcome will depend on Simon’s ability to create flexible and efficient spaces (which it already</td>
<td>Digitization of spaces can provide modularity benefits in designing efficient spaces; thus, enables users to create used/</td>
</tr>
<tr>
<td>Company Name</td>
<td>Supply chain disruption event</td>
<td>Critical BCT resources that are possessed by the firm (RBV)</td>
<td>Critical CE resources that are possessed by the firm (RBV)</td>
<td>Critical BCT resources that the firm is dependent on the external environment (RDT)</td>
<td>Critical CE resources that the firm is dependent on the external environment (RDT)</td>
<td>TOE levels of BCT and CE (L/M/H)</td>
<td>Localization</td>
<td>Agility</td>
<td>Digitization</td>
<td>L-A-D levels</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---------------------------------</td>
<td>-------------</td>
<td>--------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>PICTs</td>
<td>Due to the lack of arable land, food import and export dysfunction, and a slump in tourism due to COVID-19, the PICT region is facing a major global supply chain problem with their food security system</td>
<td>PICT has not implemented so far, but can adequately apply available BCT-based farm-sharing platform to optimize present food supply chain and resource sharing activities (e.g., food purchasing, bartering, and island sharing)</td>
<td>While the logic of farm sharing already exists in the islands, the current focus is more on generating revenue from tourism than becoming self-sufficient</td>
<td>External reliance on food security can be curbed by adopting already available agriculture blockchain applications in community circles.</td>
<td>Need to implement more food waste management techniques, given its stakeholders and governments support to become self-reliant</td>
<td>BCT (T-O-E): H-M-H CE (T-O-E): M-H-H</td>
<td>Increase in bartering and resource sharing activities</td>
<td>Creation of resource-sharing and self-reliance processes that can help in avoiding food shortage during disasters</td>
<td>Recording of land and resource sharing activities vis-à-vis production can be used as a basis for future food security planning</td>
<td>High</td>
</tr>
<tr>
<td>SDG&E</td>
<td>High electricity usage is pushing energy companies to expand for clean energy solutions</td>
<td>SDG&E joined Clean Energy Blockchain Network to track production and use of clean energy and their locations to keep track of carbon credits</td>
<td>About 45% of SDG&E’s electricity is generated from renewable sources, such as wind and solar, by installing more than 124,000 private solar systems that are connected to the power grid</td>
<td>Highly dependent on Clean Energy Blockchain Network; Operating in a highly regularized market gives less room to strategize its BCT policies</td>
<td>Reliance on customers and private rooftop owners for installing solar systems</td>
<td>BCT (T-O-E): M-H-H CE (T-O-E): H-H-H</td>
<td>Helps in demand redistribution of produced energy; Relates to carbon emission tracking</td>
<td>Supports in addressing power failure faults swiftly</td>
<td>Recording, tracing, maintaining, and forecasting power demands and future investment scopes</td>
<td>Very High</td>
</tr>
<tr>
<td>Company Name</td>
<td>Supply chain disruption event</td>
<td>Critical BCT resources that are possessed by the firm (RBV)</td>
<td>Critical CE resources that are possessed by the firm (RBV)</td>
<td>Critical BCT resources that the firm is dependent on the external environment (RDT)</td>
<td>Critical CE resources that the firm is dependent on the external environment (RDT)</td>
<td>TOE levels of BCT and CE (L/M/H)</td>
<td>Localization</td>
<td>Agility</td>
<td>Digitization</td>
<td>L-A-D levels</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--------------------------------</td>
<td>-------------</td>
<td>--------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>USPS</td>
<td>The slowdown in the postal delivery system is affecting prescription drug home deliveries</td>
<td>USPS has filed several patents in areas of validating user identification as more and more business transactions occur online. Recently, it filed a blockchain patent to make mail-in voting a safe alternative to physical polling stations.</td>
<td>In the next four years, USPS targets to divert 58% of its wastes to landfill, use alternate energy sources, sustainable packaging, recycling, and carbon accounting. It also has plans to integrate reverse-logistics concepts.</td>
<td>Government stability and policies; Technological dependences and obsolescence factors after making huge investments considering its scale of operations.</td>
<td>Reaching CE targets depends on the contractual arrangement with customers (e.g., Amazon packages its shipments themselves; USPS/FedEx uses USPS for last-mile delivery), this reducing scope to implement looping methods in shipping/packing.</td>
<td>BCT (T-O-E): H-H-H</td>
<td>CE (T-O-E): M-H-H</td>
<td>Efficient usage and better recycling of packaging material; Encourage customers to do more self-service or drop-off at return kiosks to create bulk shipments.</td>
<td>Apply bundling of mails/parcels, delivery time, and quality.</td>
<td>More scope for automation; better resource utilization; security from theft; customer’s trust.</td>
</tr>
<tr>
<td>Maersk</td>
<td>Due to time-sensitivity, simplified logistical and supply chains were created to import critical healthcare supply needs (e.g. PPE)</td>
<td>In partnership with IBM, Maersk has implemented the Tradelens platform that allows participants to digitally connect, share information, and collaborate across the shipping supply chain ecosystem.</td>
<td>Developed a Cradle-to-Cradle Passport as an online data system to keep track of disassembling and recycling information of steel components of its 600-odd containers vessels, given its size of operations.</td>
<td>Need to integrate vessel maintenance data into Tradelens so that it can be shared with insurers and customers to provide vessel quality information.</td>
<td>The passport system addresses cargo vessels only but no other metal containers. CE may be hampered by fluctuating prices of oil and the cost of making new light-weight steel containers.</td>
<td>BCT (T-O-E): H-H-H</td>
<td>CE (T-O-E): M-H-H</td>
<td>Enhances Maersk’s ability to support local partners (freight forwarders) directly.</td>
<td>Reduces logistical redundancies; Enhances efficiency and quality of vessel maintenance.</td>
<td>Enables trust and visibility of assets and shipments; Facilitates digital transfer of freight title and payment automation upon delivery at the destination port.</td>
</tr>
<tr>
<td>Caterpillar</td>
<td>As a result of the suspension of mining and construction projects, there is a sharp dip in sales for new mining/construction machinery;</td>
<td>With support from IBM Consultants, Caterpillar piloted a BCT application to automate the interactions between the customer (to be able to place and</td>
<td>Instead of producing machinery and engines using less material, Caterpillar adopted the practice of creating re-manufactured and re-manufacturable products made from durable components like gearbox,</td>
<td>To make the current BCT application fully integrated, Caterpillar needs to integrate new component providers of its supply chain.</td>
<td>The challenge exists in educating and convincing that repairment options cost much less than buying new equipment and yet.</td>
<td>BCT (T-O-E): M-H-H</td>
<td>CE (T-O-E):</td>
<td>Increases salvage value of machinery and engines for customers by providing local service.</td>
<td>Reduces the role of intermediaries by providing a direct communication channel.</td>
<td>Reduces the number of errors in the production system; Reduces average time of orders in the production.</td>
</tr>
<tr>
<td>Company Name</td>
<td>Supply chain disruption event</td>
<td>Critical BCT resources that are possessed by the firm (RBV)</td>
<td>Critical CE resources that are possessed by the firm (RBV)</td>
<td>Critical BCT resources that the firm is dependent on the external environment (RDT)</td>
<td>Critical CE resources that the firm is dependent on the external environment (RDT)</td>
<td>TOE levels of BCT and CE (L/M/H)</td>
<td>Localization</td>
<td>Agility</td>
<td>Digitization</td>
<td>L-A-D levels</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---------------------------------</td>
<td>--------------</td>
<td>--------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Eaton</td>
<td>Short supply situations between manufacturing plants and distributions</td>
<td>consequently amend orders simpler and leaner) and the manufacturing site (to control and trace specifications accurately and efficiently).</td>
<td>drivetrain, and brakes that can be easily repaired and upgraded</td>
<td>into the BCT application</td>
<td>provide the same performance</td>
<td>H-H-M</td>
<td>support. Increases material recovery rate of used material from customer sites to manufacturin g sites</td>
<td>with customers; Shows the traceability of orders; Removes multiple checkpoints for amending orders</td>
<td>system; Shows the traceability of orders; Removes manual input and duplications of reports status practices</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eaton is monitoring where this technology leads so we can consider it for adoption in the future.</td>
<td>Adopted circularity choices in the design and manufacturing processes of Ring Main Units (RMU), a green switchgear product by (a) designing for a long lifetime and minimized service requirement, (b) using materials having lowest greenhouse gas impact, (c) using recycled materials as much as possible, and (d) ensuring maximum recyclability of materials at end of life and in production</td>
<td>Unclear</td>
<td>To introduce similar more products, Eaton need to establish more sourcing options for high-quality green input materials</td>
<td>BCT (T-O-E): L-L-L</td>
<td>CE (T-O-E): M-H-M</td>
<td>Strategically distributed satellite manufacturin g and service centers increased availability of custom-made power management equipment locally to hospitals and drive-in test facilities</td>
<td>Provided ample flexibility to meet service requirement and product utilization</td>
<td>Unclear; No evidence for digitalization noted</td>
<td>Normal</td>
</tr>
<tr>
<td>Company Name</td>
<td>Supply chain disruption event</td>
<td>Critical BCT resources that are possessed by the firm (RBV)</td>
<td>Critical CE resources that are possessed by the firm (RBV)</td>
<td>Critical BCT resources that the firm is dependent on the external environment (RDT)</td>
<td>Critical CE resources that the firm is dependent on the external environment (RDT)</td>
<td>TOE levels of BCT and CE (L/M/H)</td>
<td>Localization</td>
<td>Agility</td>
<td>Digitization</td>
<td>L-A-D levels</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---------------------------------</td>
<td>-------------</td>
<td>---------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>JC Penney</td>
<td>Permanent store closures and bankruptcy filings to adapt to new realities of American fashion and retail industry</td>
<td>Despite blockchain advancements in fashion retail supply chains, such as counterfeit product and account fraud prevention, JC Penney’s strategic vision has not concerned with any BCT engagement</td>
<td>JC Penney has implemented sustainable supply chain practices: responsible product sourcing, energy conversation at stores, and responsible recycling. JC Penney is piloting with ThredUp (an online consignment and thrift store) to sell secondhand women’s clothing and handbags in its stores</td>
<td>Unclear</td>
<td>JCP Penney’s circularity practices appear to be targeted at retaining its eco-friendly customers and government compliances</td>
<td>BCT (T-O-E): L-L-L</td>
<td>CE (T-O-E): L-M-L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Balance</td>
<td>Athletic shoe company and other fashion retailers start production of face masks to provide COVID-19 relief</td>
<td>Pilots NB Realchain – a BCT application that is utilized to verify the authenticity of select New Balance shoes (OMN1S Basketball Shoes) in certain stores</td>
<td>Introduces environmentally-conscious footwear (e.g., newSKY shoes) and activewear for men and women made from a fiber content made from recycled plastic bottles and used polyesters, organic cotton, or cellulose-based lyocell. Also, #NBGIVESBACK initiatives are featured to bring environmental and social changes around the world</td>
<td>Scaling BCT into production processes requires making technological changes at multiple supply chain nodes</td>
<td>Circularity-driven product selling depends on how the firm positions its product pricing vis-a-vis quality aspects</td>
<td>BCT (T-O-E): H-H-M</td>
<td>CE (T-O-E): H-H-M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JM Smucker</td>
<td>Food and beverages firms that are scrambling to find new sources for ingredients are adopting BCT for better</td>
<td>J.M. Smucker is piloting to trace a single-source coffee brand from coffee beans sourcing to pods through IBM’s Farmer Connect, a food tracing BCT platform with an</td>
<td>Adopts wind energy for 50% of a plant’s total electricity use</td>
<td>Current traceability does not solve the coffee maker’s core issue of finding new sourcing partners. Therefore, it needs to think about BCT integration in a way that increases overall</td>
<td>Depends on the firm’s ability to introduce innovative and useful byproducts from coffee silverskin (leftover skin generated from coffee roasting) that</td>
<td>BCT (T-O-E): H-M-M</td>
<td>CE (T-O-E):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Less</td>
</tr>
<tr>
<td>Company Name</td>
<td>Supply chain disruption event</td>
<td>Critical BCT resources that are possessed by the firm (RBV)</td>
<td>Critical CE resources that are possessed by the firm (RBV)</td>
<td>Critical BCT resources that the firm is dependent on the external environment (RDT)</td>
<td>Critical CE resources that the firm is dependent on the external environment (RDT)</td>
<td>TOE levels of BCT and CE (L/M/H)</td>
<td>Localization</td>
<td>Agility</td>
<td>Digitization</td>
<td>L-A-D levels</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---------------------------------</td>
<td>-------------</td>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Sonoco</td>
<td>The rise in takeaway plastic containers has reduced consumers' desire to minimize the consumption of single-use plastics. Also, consumer’s food supply stockpiling behavior increases plastic packaging demand and its dumping too. Sonoco ThermoSafe is developing a vendor-neutral BCT platform to deliver improved transparency and traceability across the pharmaceutical supply chain that can provide end-to-end traceability of temperature-controlled drugs, including vaccines, and provide an audit trail of environmental condition monitoring. To support a single-use ban on plastic, Sonoco provides a range of sustainable packaging options, including cans made from 100-percent recycled paperboard, rigid plastic packaging made from post-consumer recycled content, recyclable mono-material flexible pouches, agricultural fibers based packaging, and recyclable, repulpable, and biodegradable plastic straws. Another example as Sonoco Alloyd’s all-paper plastic-free blister packaging helps customers to save on transportation costs. To extend BCT advantages to plastic packaging space, it needs to continue influencing large food manufacturing retailers to order BCT enabled-plastic package container model, so that consumers can earn credit for multiple subsequent reuses instead of throwing away. ZeLoop is an app that informs users of recycling options and earns cryptocurrency for bringing recyclables to collection sites. Sonoco’s cost to maintain high quality fluctuates with the supply and price of high-grade recyclable plastic, paper, metal scrap as input material. Customer involvement in packaging product development is yet another factor.</td>
<td>traceability and management of their supply chains from production to shelf</td>
<td>idea of providing the supply chain information not only to supply chain partners but also to customers through QR codes on the packaging</td>
<td>supply chain accountability at all tiers</td>
<td>is rich in antioxidant and antimicrobial properties. The creation of byproducts will reduce landfill requirements</td>
<td>M-M-M</td>
<td>usage related aspects</td>
<td>chain auditing, carbon, and chemical footprint tracing, and eco-labeling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imaginative Material</td>
<td>Demand for transparent partition and face shields makes plastic fabricators readjust their supply chains. No evidence of BCT or modern technology-based activities are found. Despite possibilities of plastic cascading options, the firm does not seem to be actively pursuing any circularity initiative in its operations. Applying BCT in this design and operations can enhance the speed and effectiveness of its “upstream” collaborative projects between fabrication designers and plastic. Applying CE depends on the firm’s organizational vision for long-term.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table Note:
- **RBV** refers to the Resource-Based View.
- **BCT** refers to the Business Continuity Technology.
- **CE** refers to the Circular Economy.
- **TOE** refers to the Triple Objectives Evaluation.
- **L-A-D** refers to the Level of Ambiguity and Dependency.

Table Data:
- **Sonoco ThermoSafe** offers a vendor-neutral BCT platform.
- **ZeLoop** is an app developed by Sonoco.
- **Sonoco Alloyd** launched an all-paper plastic-free blister packaging.
- **Imaginative Material** is a company that develops transparent partition and face shields.

Table Analysis:
- **Sonoco** is actively pursuing BCT, and the company has a strong supply chain that can be adjusted to meet environmental needs.
- **ZeLoop** is an innovative app that helps consumers manage their recycling efforts.
- **Imaginative Material** is focused on providing sustainable packaging solutions.

Table Insights:
- **Sonoco ThermoSafe** is a leading example of a company that integrates BCT and CE to enhance sustainability and operational efficiency.
- **ZeLoop** demonstrates how technology can be used to improve consumer behavior towards sustainability.
- **Imaginative Material** exemplifies how new product development can lead to sustainable solutions.
<table>
<thead>
<tr>
<th>Company Name</th>
<th>Supply chain disruption event</th>
<th>Critical BCT resources that are possessed by the firm (RBV)</th>
<th>Critical CE resources that are possessed by the firm (RBV)</th>
<th>Critical BCT resources that the firm is dependent on the external environment (RDT)</th>
<th>Critical CE resources that the firm is dependent on the external environment (RDT)</th>
<th>TOE levels of BCT and CE (L/M/H)</th>
<th>Localization</th>
<th>Agility</th>
<th>Digitization</th>
<th>L-A-D levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASF</td>
<td>The firm expanded its cleaning and disinfectant product line for food processing and animal health safety requirement in response to COVID-19. In another instance, lending of supercomputer technology to help find new molecules</td>
<td>Launches a pilot blockchain project – reciChain – to improve plastic circularity in terms of sorting, tracing, and monitoring of plastics throughout the value chain in Canada that has already been tested in Brazil</td>
<td>BASF functions with fully integrated CE principles driven operations that enables it to create different products, such as solvents from residuals of raw material, use of byproduct as input for another product, chemical enabling and prolonging resources at retail production, and bio-mass, bio-degradable, and composite fiber products from after-use collectives</td>
<td>Large scale adoption of reciChain requires the BCT system to support implementing, training, and rewarding local partners for applying best practices of plastic collection</td>
<td>BASF seems self-sufficient and resource-rich in CE practices, and thus, less dependent on any environmental factors</td>
<td>BCT (T-O-E): H-H-M CE (T-O-E): H-H-H</td>
<td>Enables local suppliers to become more engaged with the focal company in the used-plastic supplying process</td>
<td>Enhances the focal firms</td>
<td>Embeds local suppliers into national/globa l chain of plastic recovery and recycling operation</td>
<td>Very High</td>
</tr>
</tbody>
</table>

BASF functions with fully integrated CE principles driven operations that enables it to create different products, such as solvents from residuals of raw material, use of byproduct as input for another product, chemical enabling and prolonging resources at retail production, and bio-mass, bio-degradable, and composite fiber products from after-use collectives.