Momentum på den finländska aktiemarknaden

Jonathan Flemming

Institutionen för finansiell ekonomi och ekonomisk statistik

Svenska handelshögskolan

Vasa

2017
**SVENSKA HANDELSHÖGSKOLAN**

<table>
<thead>
<tr>
<th><strong>Institution:</strong> Institutionen för finansiell ekonomi och ekonomisk statistik</th>
<th><strong>Arbetets art:</strong> Avhandling</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Författare och Studerandenummer:</strong> Jonathan Flemming, 137381</td>
<td><strong>Datum:</strong> 25.2.2018</td>
</tr>
</tbody>
</table>

**Avhandlingens rubrik:**
Momentum på den finländska aktiemarknaden

**Sammandrag:**

I denna avhandling har undersökt huruvida det går att finna belägg för att en momentumeffekt påverkar aktieresultaten på OMX Helsinki. I den empiriska delen av avhandlingen uppbyggs momentumsorterade portföljer och utifrån dessa formuleras en momentumstrategi där en vinnarportfölj hålls och en förlorarportfölj blankas.


En momentumeffekt med en månatlig avkastning på över 1 % hittas för samtliga kombinationer av antal portföljer och antal månader i sorteringsperioden. Överhoppningsperioden är antingen 1 eller 2 månader lång då momentumstrategins resultat är som störst. Lönsamheten för de olika strategierna var enligt Sharpe-kvoten ungefär den samma med fem portföljer som med tre, varför tre portföljer antas bättre då antalet aktier per portfölj då är större och marknadsrisken således mer bortdiversifierad. Lönsamheten var något högre med en sorteringsperiod på 1 månad än med en sorteringsperiod på 5 månader, men då resultaten låg nära varandra och andra resultat i undersökningen tydde på att momentumeffekten starkare påverkade resultaten då sorteringsperioden var 5 månader lång antogs denna längd vara mer ideal.

Undersökningen stöder hypotesen om att en momentumeffekt påverkar den finländska aktiemarknaden. Dock kan inga absoluta slutsatser dras på basis av denna avhandling.

**Nyckelord:** Momentum, momentumeffekt, momentumvinst, contrarianeffekt, vinnarportfölj, förlorarportfölj, arbitrage
INNEHÅLLSFÖRTECKNING

1 Inledning ................................................................................................................................. 5
  1.1 Problemområde ................................................................................................................... 5
  1.2 Syfte .................................................................................................................................. 6
  1.3 Omfattning ........................................................................................................................ 6
  1.4 Disposition ......................................................................................................................... 7
2 Teoretisk bakgrund .................................................................................................................. 8
  2.1 Hypotesen om effektiva marknader .................................................................................... 8
    2.1.1 Svag marknadseffektivitet ........................................................................................... 8
    2.1.2 Halvstark marknadseffektivitet ................................................................................... 9
    2.1.3 Stark marknadseffektivitet .......................................................................................... 9
    2.1.4 Tillgänglig information ............................................................................................... 10
  2.2 Hypotesen om slumpvandring ........................................................................................... 10
  2.3 Modeller för prissättning av tillgångar .............................................................................. 11
    2.3.1 Capital Asset Pricing Model ......................................................................................... 11
    2.3.2 Anomalier .................................................................................................................... 12
    2.3.3 Fama och Frenchs trefaktormodell .......................................................................... 13
  2.4 Momentumeffekten .......................................................................................................... 14
3 Tidigare forskning om momentum ....................................................................................... 16
  3.1 Kort- och långsiktigt förhållande mellan vinnare och förlorare ....................................... 16
  3.2 Den första vetenskapliga beskrivningen .......................................................................... 16
  3.3 Fortsatta iakttagelser av momentumeffekten .................................................................... 17
    3.3.1 Observationer på olika geografiska marknader .......................................................... 17
    3.3.2 Momentumeffekten för industriportföljer ................................................................. 19
    3.3.3 Observationer hos annat än aktier .............................................................................. 19
  3.4 Olönsamma momentumstrategier ..................................................................................... 20
  3.5 Orsaker till momentumeffekten ......................................................................................... 21
    3.5.1 Datatvingning .............................................................................................................. 21
    3.5.2 Rationella förklaringar ............................................................................................... 21
    3.5.3 Beteendevetenskapliga förklaringar ....................................................................... 24
      3.5.3.1 Psykologisk bias: övertro till egen information ................................................... 25
      3.5.3.2 Psykologisk bias: Konservatism och representativ heurestik .................. 27
3.5.3.3 Kognitiv bias: den tillgängliga informationen behandlas endast delvis

3.5.4 Arbitragebegränsningar

3.5.5 Kombination av rationella och beteendevetenskapliga förklaringsmodeller

4 Data och metod

4.1 Data

4.2 Metod

5 Resultat

5.1 Fem portföljer, sorteringsperiod på 11 månader (5p11s)

5.2 Fem portföljer, sorteringsperiod på 5 månader (5p5s)

5.3 Fem portföljer, sorteringsperiod på 1 månad (5p1s)

5.4 Tre portföljer, sorteringsperiod på 11 månader (3p11s)

5.5 Tre portföljer, sorteringsperiod på 5 månader (3p5s)

5.6 Tre portföljer, sorteringsperiod på 1 månad (3p1s)

6 Diskussion och Sammanfattning

6.1 De bäst avkastande momentumstrategierna

6.2 Resultat med varierande längd på överhoppningsperioden

6.3 Jämförelse mellan momentumstrategierna och andra portföljkombinationer

6.4 Kritisk granskning

6.5 Sammanfattning

KÄLLFÖRTECKNING

BILAGOR

Bilaga 1 Sammanfattning av studier i kapitel 3.1–3.3

TABELLER

Tabell 1 Resultat med 1 månads överhoppningsperiod (5p11s)

Tabell 2 Resultat för olika överhoppningsperioder (5p11s)

Tabell 3 Storleksordning på avkastningar för olika portföljkombinationer (5p11s)

Tabell 4 Resultat med en 2 månaders överhoppningsperiod (5p5s)
Tabell 5  Resultat för olika överhoppningsperioder (5p5s) ............................................... 44
Tabell 6  Storleksordning på avkastningar för olika portföljkombiner (5p5s) .......................... 47
Tabell 7  Resultat med en 2 månads överhoppningsperiod (5p1s) ....................................... 48
Tabell 8  Resultat för olika överhoppningsperioder (5p1s) .................................................... 49
Tabell 9  Storleksordning på avkastningar för olika portföljkombiner (5p1s)......................... 52
Tabell 10 Resultat med 1 månads överhoppningsperiod (3p11s) ......................................... 53
Tabell 11 Resultat för olika överhoppningsperioder (3p11s) ................................................ 54
Tabell 12 Storleksordning på avkastningar för olika portföljkombiner (3p11s)......................... 56
Tabell 13 Resultat med 1 månads överhoppningsperiod (3p5s) ........................................... 57
Tabell 14 Resultat för olika överhoppningsperioder (3p5s) ................................................. 58
Tabell 15 Storleksordning på avkastningar för olika portföljkombiner (3p5s)......................... 61
Tabell 16 Resultat med 2 månads överhoppningsperiod (3p1s) ........................................... 62
Tabell 17 Resultat för olika överhoppningsperioder (3p1s) .................................................... 63
Tabell 18 Storleksordning på avkastningar för olika portföljkombiner (3p1s)......................... 66
Tabell 19 Jämförelse mellan medelavkastningarna för momentumstrategierna (5p)....................... 67
Tabell 20 Jämförelse mellan medelavkastningarna för momentumstrategierna (3p)....................... 67
Tabell 21 Jämförelse mellan standardavvikelserna för momentumstrategierna (5p).................... 68
Tabell 22 Jämförelse mellan standardavvikelserna för momentumstrategierna (3p).................... 68
Tabell 23 Jämförelse mellan Sharpe-kvoterna för momentumstrategierna (5p)............................ 69
Tabell 24 Jämförelse mellan Sharpe-kvoterna för momentumstrategierna (5p)............................ 69
Tabell 25 Bästa momentumportföljer och bästa icke-momentumportföljer.............. 73

FIGURER

Figur 1  Momentumstrategins prestation med olika överhoppningsperioder (5p11s)................................. 40
Figur 2  Sharpe-kvoten med olika överhoppningsperioder (5p11s).............................................. 41
Figur 3  Momentumstrategins prestation med olika överhoppningsperioder (5p5s)............................. 45
Figur 4  Sharpe-kvoten med olika överhoppningsperioder (5p5s).............................................. 46
Figur 5  Momentumstrategins prestation med olika överhoppningsperioder (5p1s)............................. 50
Figur 6  Sharpe-kvoten med olika överhoppningsperioder (5p1s).............................................. 51
Figur 7  Momentumstrategins prestation med olika överhoppningsperioder (3p11s)............................. 55
Figur 8  Sharpe-kvoten med olika överhoppningsperioder (3p11s).............................................. 55
Figur 9  Momentumstrategins prestation med olika överhoppningsperioder (3p5s)............................ 59
Figur 10  Sharpe-kvoten med olika överhoppningsperioder (3p5s) .................. 60
Figur 11  Momentumstrategins prestation med olika överhoppningsperioder (3p1s)
................................................................................................................................. 64
Figur 12  Sharpe-kvoten med olika överhoppningsperioder (3p1s) ................... 65
1 INLEDNING
Alltsedan den första vetenskapliga beskrivningen av Jegadeesh och Titman (1993) har studier världen över kunnat påvisa existensen av den medellångsiktiga trend i aktieavkastningar som brukar benämnas momentum eller momentumeffekt (eng. momentum effect). I praktiken innebär denna momentumeffekt att en aktieportfölj uppbyggd av aktier som de senaste månaderna klarat sig bra i jämförelse med övriga aktier på marknaden fortsätter att klara sig bra under närmast följande månader. Under samma period kommer en portfölj uppbyggd av aktier som på motsvarande sätt klarat sig dåligt under den senaste tiden att även fortsättningsvis presteras undermåligt. (Jegadeesh och Titman 1993) Strategier för handel på aktiemarknader baserade på momentumeffekten har visat sig vara en källa till överavkastning. Detta går inte ihop med idén om en effektiv marknad enligt vilken all tillgänglig information bör återspeglas i en tillgångs pris. På grund av detta har momentumeffekten i många fall lyfts fram som en marknadsanomali.


1.1 Problemområde
Momentumeffekten är en anomali i förhållande till hypotesen om en effektiv marknad och observeras fortfarande på flera marknader efter att ha varit känd i över två decennier. På en effektiv marknad borde det inte gå att formulera lönsamma handelsstrategier som enbart baserar sig på aktiers tidigare avkastningar. Då ingen allmänt accepterad förklaring på fenomenet ännu presenterats är det motiverat med fortsatta studier av fenomenet.

1.2 Syfte

Denna studie ämnar undersöka huruvida en statistiskt signifikant momentumeffekt kan påvisas på den finländska aktiemarknaden.

1.3 Omfattning

1.4 Disposition

Studien inleds i kapitel 2 med en genomgång av den teoretiska bakgrunden till fenomenet momentumeffekt. Kapitel 3 presenterar en del viktiga studier gällande momentumeffekten och vilka observationer som gjorts i dessa. Fokus kommer också att ligga på hur momentumeffekten förklarats av olika forskare. I kapitel 4 redogörs för de data som använts i den empiriska undersökningen av den finländska aktiemarknaden och för metoden enligt vilken studien är utförd. Sedan i kapitel 5 presenteras resultatet av undersökningen och i kapitel 6 avslutas avhandlingen med ett med diskussion och sammanfattning av resultatet.
2 TEORETISK BAKGRUND


2.1 Hypotesen om effektiva marknader

Hypotesen om effektiva marknader (eng. "the efficient market hypothesis", härrefter EMH) var tidigare allmänt accepterad i akademiska kretsar. Att en aktiemarknad är effektiv, dvs. följer EMH, innebär att omedelbart då ny information om en aktie finns tillgänglig kommer denna information att införlivas i aktiens pris. All information om aktien vid varje tidpunkt finns därmed reflekterad i dess pris. Således kan ingen marknadsaktör få bättre avkastning per enhet risk än vad som är möjligt för den som väljer sina aktier helt slumpmässigt. Varken teknisk analys, dvs. att försöka förutsäga framtida avkastningar genom att studera tidigare avkastningar, eller fundamental analys, dvs. att försöka hitta undervärderade aktier genom att studera tillgänglig finansiell information, kan således generera mervärde i en effektiv marknad. Effektivitet, i denna kontext, syftar alltså på en situation där det är omöjligt för en marknadsaktör att tillskansa sig en avkastning högre än genomsnittet utan att samtidig också ta på sig en risk högre än genomsnittet. (Malkiel 2003)

Det är vanligt att dela in marknadseffektiviteten i tre olika varianter – svag, halvstark och stark. Skillnaden mellan dessa ligger i vad man ser som "all information", dvs. vilken information om en tillgång som omedelbart reflekteras i tillgångens pris. Ju starkare variant desto mer information inkluderas. En observation kan alltså vara oförenlig med den starka varianten av EMH (en anomali), samtidigt som den stämmer överens med den svaga varianten, men inte tvärt om. Nedan följer en genomgång av de olika varianterna av marknadseffektivitet och vilken typ av information de inkluderar. (Bodie, Kane & Marcus 2014:353)

2.1.1 Svag marknadseffektivitet

Vid svag marknadseffektivitet reflekterar marknadspriserna all den information som kan införskaffas genom studier av marknadsdata (t.ex. en tillgångs prishistorik, transaktionsvolym eller antal blankningar). Att analysera tidigare marknadsdata för att försöka hitta trender i prissättningen är därmed meningslöst eftersom det är omöjligt att
2.1.2 Halvstark marknadseffektivitet

Vid halvstark marknadseffektivitet krävs att marknadspriserna reflekterar all offentligt tillgänglig information rörande den givna tillgången. Sådan information inkluderar, utöver vad som gäller för svag marknadseffektivitet, även bl.a. information om ett företags produktlinjer, kvaliteten hos företagets förvaltning, balansräkningens sammansättning, eventuella patent som företaget har, försäljningsprognoser och redovisningspraxis som företaget följer. Om en marknad är effektiv i enlighet med den halvstarka formen av marknadseffektivitet kommer priserna på marknaden att justeras i samma stund som ny information blir tillgänglig via en offentlig källa (t.ex. internet eller ekonomiska tidskrifter). Detta gäller exempelvis när förra kvartalets resultat presenteras, när en nyemission av aktier blir känd eller när ett förslag om en fusion mellan två olika företag läggs fram. (Bodie, Kane, Marcus 2014: 354; Brealey, Myer och Allen 2017: 332)

2.1.3 Stark marknadseffektivitet

Enligt den starka versionen av EMH reflekterar aktiepriser all den information som är relevant för företaget i fråga och som kan tillskansas genom analys av företaget och ekonomin. Detta inkluderar även insiderinformation. Denna version av hypotesen är extrem och få skulle argumentera emot påståendet att ett företags tjänstemän har tillgång till relevant information tillräckligt länge före den släpps offentligt för att kunna dra ekonomisk nytta av informationen ifråga. De facto är det så att mycket arbete läggs ner på att hindra insiders från att dra fördel av sina privilegierade lägen bl.a. genom lagstiftning. Det är emellertid inte alltid helt lätt att skilja mellan privat information och insiderinformation. I en marknad som kännetecknas av stark marknadseffektivitet kan man observera investerare som haft tur och investerare som haft otur, men ingen som konsekvent klarar av att vinna över marknaden. (Bodie, Kane & Marcus 2014: 354; Brealey, Myer & Allen 2017: 332)
2.1.4 Tillgänglig information

Viktigt att notera är att EMH i alla dess former specifikt förutsätter att *tillgänglig* information återspeglas i priset hos en tillgång. Man utgår inte ifrån att marknadsspriserna alltid kommer att vara korrepta, endast att de är vad de borde vara på basis av vad man för tillfället känner till om de förhållanden som inverkar på en tillgångs pris. Ibland kan man i efterhand konstatera att marknadsspriserna avvikit en hel del från var de borde ha legat, men att priserna likväl tedde sig som rimliga och korrepta på basis av den information som fanns tillgänglig i det ögonblick dessa tillgångar prissattes. Enligt EMH kan man inte vid en given tidpunkt med hjälp av den information som för tillfället finns att tillhandahålla veta huruvida dagens priser i framtiden kommer att visa sig ha varit alltför höga eller alltför låga. I en rationell marknad utgår man dock ifrån att priserna i medeltal kommer att vara korrepta. (Bodie, Kane & Marcus 2014: 354)

Empiriska test av EMH är alltsomoftast test av den halvstarka varianten. I denna avhandling kommer EMH att testas genom ett försök att ta reda på huruvida användandet av en aktiv marknadstrategi som följer vissa regler för vilka aktier som bör säljas och vilka som bör blankas (i detta fall reglerna för en momentumstrategi) leder till signifikanta abnorma vinster. Ifall dylika vinster erhålls kan resultatet ses som ett förkastande av EMH. Dock är det viktigt att notera att transaktionskostnader och den systematiska risk som en aktiv strategi medför kan innebära att EMH håller ifall de signifikanta vinsterna hålls tillräckligt låga. (Cuthbertson & Nitzsche 2004: 64–65)

2.2 Hypotesen om slumpvandring

Inom den vetenskapliga litteraturen brukar termen slumpvandring (eng. "random walk") löst användas som beskrivning på en prisserie där varje nytt pris är en slumpmässig modifiering av det föregående priset. Logiken som kopplar slumpvandring till den effektiva marknaden är som följer: om flödet av information är obehindrat och all information genast återspeglas i aktiernas pris så kommer morgondagens pris att vara oberoende av dagens prisändringar och reflektera endast morgondagens nyheter. Nyheter är per definition oförutsägbara, vilket innebär att även morgondagens prisändringar är oförutsägbara och slumpmässiga. Ifall morgondagens pris vore oförutsägbar och därmed inte slumpmässigt, vore det ett tecken på att all information idag inte återspeglas av tillgångens pris, dvs. att EMH inte håller. (Bodie, Kane & Marcus 2014: 350–351; Malkiel 2003)

2.3 Modeller för prissättning av tillgångar

På basis av idén om en effektiv marknad och teorin om hur en sådan borde fungera har ekonomer utvecklat modeller för hur tillgångar rationellt borde vara prissatta under de premisser som gäller för en effektiv marknad. Sådana modeller bygger vidare på teorin om en effektiv marknad.

2.3.1 Capital Asset Pricing Model


\[ E(R_i) - r_f = \beta (E(R_m) - r_f) \]

, där \(E(R_i)\) är den förväntade avkastningen för tillgången, \(r_f\) är den riskfria avkastningen, \(E(R_m)\) är den förväntade avkastningen för marknadsportföljen och \(\beta\) är \(\frac{Cov(R, R_m)}{\sigma^2}\). Enligt CAPM är det alltså enbart systematisk risk som prissätts. (Bodie, Kane & Marcus, 2014: 291–297; Brealey, Myers & Allen: 201)

2.3.2 Anomalier


Kalenderanomalier

En del av de effektiva marknadsanomalierna är s.k. kalenderanomalier. En kalenderanomali innebär att avkastningarna på marknaden är systematiskt högre eller lägre vid vissa bestämda tidpunkter. Avkastningarnas storlek kan t.ex. bero på vilken veckodag, månad eller dag i månaden det för tillfället är. Exempel på kalenderanomalier är bl.a. januarieffekten, måndagseffekten och Halloween-effekten. (Urquhart & McGroarty 2014)

Small-Firm-in-January-effekten

**P/E-effekten**


**Book-to-market ratio**


2.3.3 *Fama och Frenchs tresfaktormodell*

Mönster i genomsnittlig aktieavkastning som inte förklaras av den tillgångsprissättningsmodell som används är anomalier i hänseende till modellen i fråga (Fama & French 2008). Detta innebär att ifall en prissättningsmodell tar i beaktande en faktor som annars skulle utgöra en anomali på så sätt att faktorn i fråga inkluderas i modellens uträkningar så utgör denna faktor inte längre en anomali i hänseende till prissättningsmodellen.

Eftersom CAPM visat sig ha nämnvärdra brister lanserade Fama och French år 1993 en s.k. tresfaktormodell (Fama & French 1993). Denna modell är en vidareutveckling av CAPM som utöver att den, i likhet med CAPM, tar hänsyn till faktorn marknadsrisk även beaktar faktorerna storlek och värde (enligt price-to-book förhållandet) hos företagen på marknaden. Tresfaktormodellen kan skrivas på följande sätt:

\[ E(R_i) - r_f = \beta (E[R_m] - r_f) + b_s \times SMB + b_v \times HML \]

, den liknar CAPM, men inkluderar två nya faktorer, \( SMB \) (small-minus-big) och \( HML \) (high-minus-low). \( SMB \)-faktorn är skillnaden mellan avkastningar från diversifierade portföljer med små respektive stora aktier, medan \( HML \)-faktorn på motsvarande sätt är
skillnaden mellan avkastningar från diversifierade portföljer med värde- respektive tillväxtaktier.


2.4 Momentumeffekten


Momentumeffekten utgör en anomaly som inte borde observeras i en effektiv marknad. Information som finns tillgänglig idag (tidigare avkastningar) borde inte kunna användas för att förutsäga det förmodat slumpmässiga och okända framtidiga priset. Eftersom momentumeffekten antyder att studier av marknadsdata kan ge information om framtidiga avkastningar bryter den mot de antaganden som görs redan vid den svaga
3 TIDIGARE FORSKING OM MOMENTUM

Det har gjorts många observationer av momentumeffekten. I detta kapitel presenteras några av dem för att ge en överblick över fenomenet. En sammanfattande tabell av de studier som presenteras i kapitel 3.1–3.3 finns i bilaga 1.

3.1 Kort- och långsiktigt förhållande mellan vinnare och förlorare

Innan Jegadeesh och Titman publicerade sin studie om den medellångsiktiga momentumeffekten hade liknande studier gjorts för andra, kortare och längre, tidsperioder.


3.2 Den första vetenskapliga beskrivningen


3.3 Fortsatta iakttagelser av momentumeffekten


Geczy och Samanov (2016) testade huruvida en momentumeffekt kan observeras på den amerikanska värdepappersmarknaden under perioden 1801 till 1926. I sin studie konstaterar de att momentum strategier varit lönsamma och statistiskt signifikanta även innan 1927 och att momentumeffekten existerat i åtminstone 212 år.

3.3.1 Observationer på olika geografiska marknader


I studien konstaterade Rouwenhorst (1998) att hans internationellt diversifierade portföljer gick på vinst med ca 1 % per månad. En momentumeffekt observerades i alla de 12 europeiska marknader som ingick i studien. Anomalin noterades oberoende av storleken på företagen, men den tycktes starkare hos mindre företag. De vinnande företagen i studien fortsatte att klara sig bra i ca 1 år framöver, vilket inte kunde förklaras med konventionella riskmått. Studien visade också att avkastningen från momentumstrategier i Europa tycktes korrelera med motsvarande avkastning i USA, vilket antydde att det kan finnas en gemensam drivande faktor för dessa marknader. (Rouwenhorst, 1998)


innebär att aktiepriser reagerar långsamt på information. De föreslår istället att resultatet enbart beror på slumpen.


3.3.2 Momentumeffekten för industriportföljer


3.3.3 Observationer hos annat än aktier

momentumstrategi ger på valutamarknader är alltså jämförbar med vad som observerats på aktiemarknader. Detta trots valutamarknadernas särdrag såsom en stor handelsvolym, i huvudsak professionella köpmän, inga hinder gällande blankning och en betydlig grad av inblandning från centralbanker. Studien konkluderar även att de resultat den presenterar antyder att det finns en gemensam källa till momentumeffekten för olika slag av tillgångar.


3.4 Olönsamma momentumstrategier

Momentumstrategier har visat sig vara lönsamma i ett flertal olika kontexter, men det innebär inte att de alltid fungerar. Japan har t.ex. nämnts som en geografisk marknad där momentumeffekten inte kunnat observeras på samma sätt som på andra marknader (Fama & French 2012). Ett annat tillfälle då momentumstrategier visat sig vara olönsamma är då marknaden återhämtar sig starkt efter en betydande nedgång (Jegadeesh & Titman 2011).

3.5 Orsaker till momentumeffekten

Alltsedan momentumeffekten först beskrevs av Jegadeesh och Titman år 1993 har det gjorts försök att finna en rationell förklaring till varför anomalin existerar (Zoghlami 2013). Även om de resultat som påvisar existensen av en momentumeffekt är allmänt accepterade, är orsaken till resultaten och tolkningen av dessa likväl omdebatterade. En del har menat att en observerbar momentumeffekt är ett tydligt bevis på att marknaden i fråga de facto inte är effektiv, medan andra föreslagit att momentumavkastningen utgör kompensation för risk. (Jegadeesh & Titman 2001)

De som är av den senare ståndpunkten står fast vid tolkningen av marknaden som rationell och effektiv trots den observerade förekomsten av en momentumeffekt. Momentumeffekten ges då en rationell förklaring som utgår från en rationell marknad där EMH håller. Många forskare är dock av den åsikten att rationella förklaringar inte räcker och har formulerat möjliga förklaringar som bygger på beteendevetenskapliga modeller och biaser.

3.5.1 Datautvinning


3.5.2 Rationella förklaringar

Utgår man ifrån att momentumeffekten kan existera inom ramen för en rationell marknad borde momentumavkastningen i så fall vara kompensation för den risk som investeraren tar på sig. Dylika förklaringar kan därmed sägas vara riskbaserade. Den riskjusterade avkastningen kan mätas på olika sätt som alla har sina fördelar och nackdelar, t.ex. kan man utgå från Sharpe-kvoten (överavkastning per enhet total risk),
Treynor-kvoten (överavkastning per enhet systematisk risk) eller Jensens alfa (den del av medelavkastningen som är högre än vad som beräknas av CAPM) (Bodie, Kane & Marcus, 2014:840). Så länge som avkastningarna är korrekt riskjusterade hävdar riskbaserade förklaringar att strategier som ger högre avkastning än andra strategier också kommer att föra med sig en högre risk.


Berk et al. (1999) undersöker vilken lönsamhet momentumstrategier för tidsperioderna 1, 3, 6 och 9 månader och 1–10, 20 och 30 år har i deras modell. Utgående från ett sampel på 500 företag bygger de upp en vinnarportfölj och en förlorarportfölj av de 10 % som presterat bäst respektive sämst. Den årliga vinsten för en strategi som finansieras med blankning av förlorarportföljen och som köper vinnarportföljen räknas sedan ut. Undersökningen visade att momentumstrategin presterade negativt för korta tidsperioder (1, 3 och 6 månader) och gick jämnt ut vid 9 månader. Därefter presterade strategin alltmer positivt för tidshorisonterna 1 till 5 år varefter lönsamheten började
avta. Ett maximi på 5 år passar väl ihop med den genomsnittliga livslängden för ett projekt. Modellen kan således kvalitativt återge både en kortsiktig contrarianeffekt och medellångsiktig momentumeffekt. (Berk et al. 1999)

Det finns emellertid en del problematik förknippad med dessa resultat eftersom de inte riktigt överensstämmer med empirin. Även om storleken på den förutsedda momentumvinsten (0,4 % per år) är i linje med vissa observationer (Conrad & Kaul 1998) kom fram till en vinst på mellan 0,2 % och 0,7 % beroende på sampelperioden), så är det problematiskt att momentumstrategins lönsamhet är på topp först efter ca 5 år. Detta kan jämföras med vad som observerats empiriskt av Jegadeesh och Titman (1993), nämligen att momentumstrategins lönsamhet tenderar att nå sin maximipunkt efter nio till tolv månader. På motsvarande sätt visar empiriska studier av kortsiktiga contrarianstrategier (t.ex. Conrad & Kaul 1998) att dessa endast är lönsamma för tidsperioder kortare än tre månader. (Berk et al. 1999)

Tidshorizonerna i modellen beror mycket på omsättningshastigheten för företagens tillgångar och det är möjligt att förkorta dem genom att sänka den genomsnittliga livslängden för ett projekt ( genom att höja avskrivningstakten). Även om detta skulle lösa problemet med tidshorizonen återstår dock att förklara varför man är tvungen att avskriva mer än vad de makroekonomiska data som från början användes för att ta fram modellen antyder. (Berk et al. 1999)

3.5.3 Beteendevetenskapliga förklaringar

Under det sena 1990-talet var många forskare beredda att korrigera antagandet att alla marknadsaktörer är fullständigt rationella. Nya teorier om momentumeffekten som inte utgick från detta kom därmed att formuleras. Dessa teorier byggde på psykologiska studier som pekade på att människor i praktiken är långt ifrån rationella i sitt handlande. (Zoghlami 2013)

Beteendevetenskapliga förklaringar på momentumeffekten utgår från att ineffektiviteten i en marknad kan uppstå som resultat av irrationella investerare. Detta innebär att aktiepriserna på marknaden inte följer en slumpvandring. Enligt psykologer finns det två typer av bakomliggande orsaker till denna avvikelse från rationalitet. Antingen beror den på att individens behandla information subjektivt (psykologisk bias) eller så beror den på att en verklig människa inte klarar av att ta all tillgänglig information in beaktande, vilket förutsätts i en effektiv marknad (kognitiv bias). Oavsett formen av irrationalitet
uttrycks den som antingen en under- eller överreaktion på ny information (nyheter). (Zoghslami 2013)

Att vinsterna från momentumstrategier beror på en försenad reaktion på information (underreaktion) har setts som en naturlig förklaring till den observerade momentumeffekten. Ifall marknaden underreagerar på ny information innebär det att priset på en aktie inte kommer att stiga så mycket som det borde efter en god nyhet. På motsvarande sätt kommer en akties pris inte att sjunka tillräckligt mycket efter en dålig nyhet. Priset på aktierna reagerar alltså enbart delvis på nyheterna. Dessa aktier blir således undervärderade vid goda nyheter och övervärderade vid dåliga nyheter. Efterhand som informationen från en nyhet återspeglas i aktiepriset kommer priset att rättas till. Att köpa en sådan aktie när en god nyhet först tillkännages (då priset stiger första gången) eller blanka en aktie när en dålig nyhet först tillkännages (då priset sjunker första gången) vore således en lönsam affär som genererar vinst då nyheten så småningom reflekteras i aktiepriset. (Jegadeesh & Titman 2011)

Den andra typen av förklaringar grundade i beteendevetenskapen är att momentumeffekten beror på att marknaden överreagerar på nyheter. Detta innebär att aktiepriserna stiger mer än de borde vid goda nyheter och sjunker mer än de borde vid dåliga nyheter. Då investerarna så småningom blir varse om överreaktionen börjar aktiepriserna rättas till och trenderna svänger om (i enlighet med contrarianeffekten). Det kan dock ta tid innan priserna rättas till vilket innebär att överreaktionerna kan fortsätta så pass länge att en momentumeffekt observeras. Momentumstrategier kommer att vara lönsamma då investerare fortsätter att driva upp priset på de aktier som tidigare presterat bra (vinnare fortsätter som vinnare) och på motsvarande sätt fortsätter att driva ner priset på de aktier som presterat dåligt (förlorare fortsätter som förlorare). (Zoghslami 2013)

Beteendevetenskapliga förklaringar behöver inte utgå från att momentumeffekten strikt beror på antingen över- eller underreaktion, utan det har formulerats teorier som tar båda typerna av förklaringar i beaktande.

3.5.3.1 Psykologisk bias: övertro till egen information.


I takt med att den privata informationen blir offentlig rättas felprissättningen till och priset närmar sig sitt rätta värde. Detta gör momentumstrategier olönsamma och contrarianstrategier lönsamma. Således ligger den positiva tron på den egna förmågan till grund för både den medellångsiktiga momentumeffekten och den långsiktiga contrarianeffekten. (Daniel et al. 1998)

I den förklaringsmodell som Daniel et al. (1998) presenterar är investerarna kvasierationala. Anledningen till att de inte handlar fullständigt rationellt är att de värderar...
privat information alltför högt och att de således är partiska då de uppdaterar sin information. (Daniel et al. 1998)

3.5.3.2  **Psykologisk bias: Konservatism och representativ heuristik**


kommer att åtföljas av en förändring med motsatt tecken i följande period, medan modell 2 indikerar det motsatta. (Barberis et al. 1998)


3.5.3.3 **Kognitiv bias: den tillgängliga informationen behandlas endast delvis**

Hong och Stein (1999) betonar i sin beteendevetenskapliga förklaringsmodell för momentumeffekten växelverkan mellan ”agenter”. Enligt Hong och Steins (1999) modell finns det två olika sorters agenter på marknaden, ”newswatchers” och ”momentum traders”. Ingendera av dessa två typer agerar helt och hållet rationellt, utan de olika agenttyperna klarar bara av att behandla en del av den tillgängliga offentliga informationen (kognitiv bias). Newswatchers förutsägelse om marknaden grundar sig enbart på privata signaler om framtida kassaflöden och de tar inte nuvarande eller tidigare priser i beaktande. Momentum traders baserar däremot sina förutsägelser helt och hållet på tidigare trender i aktiepriser. Dessa förutsägelser har formen av enkla funktioner av tidigare priser. Hong och Stein (1999) antar vidare att privat information sprids gradvis till de newswatchers som agerar på marknaden. (Hong & Stein 1999)

Idén med Hong och Steins (1999) förklaringsmodell är att momentumeffekten orsakas av att de två typerna av agenter använder ofullständig information då de försöker förutsäga priser på marknaden. När newswatchers får ny information återspeglas denna delvis i priset på tillgången i fråga, men inte helt. Detta följer av att informationen sprids gradvis och av att newswatchers inte hämtar information från nuvarande pris på en tillgång. Marknaden underreagerar således. (Hong & Stein 1999)

Momentum traders kommer nu att försöka dra nytta av marknadens underreaktion genom momentumstrategier. Dessa momentumstrategier kommer att vara vinstgivande i början av momentumcykeln, dvs. kort efter det att de viktiga nyheterna nått newswatcheragenterna och priset på tillgången börjat stiga. Strategins lönsamhet kommer däremot att avta med tiden och till sist bli negativ. Då tidiga momentum traders tjänar på strategin kommer det att locka nya momentum traders, vilket kommer att leda till att priset på tillgången stiger ännu mer, vilket kommer att locka ännu fler momentum traders. Mot slutet av cykeln kommer inverkan från allt fler momentum traders att leda till att marknaden överreagerar. De momentum traders som investerar efter en viss tidpunkt kommer att förlora på strategin eftersom tillgången till sist blir övervärderad. (Hong & Stein 1999)

Enligt Hong och Steins (1999) modell borde momentumstrategier användas då goda nyheter om en tillgång inte ännu helt återspeglas i en tillgångs pris. Problemet är att en prisökning inte alltid behöver bero på goda nyheter, utan också kan bero på tidigare momentumköp. Eftersom momentum traders inte vet om de goda nyheterna är nya eller...
inte (den informationen har newswatchers, men de använder inte momentumstrategier) kan de inte heller avgöra om det är tidigt eller sent i momentumcykeln. (Hong & Stein 1999)

Modellen utgör ett försök att förklara både medellångsiktig momentumeffekt och långsiktig contrarianeffekt genom att förena underreaktion och överreaktion i samma modell. Vidare förklaras både över- och underreaktionen av samma sorts chock: den gradvisa spridningen av ny information. En grupp av marknadsaktörer underreagerar på privat information och en annan grupp försöker utnyttja detta och göra arbitragevinster. Detta eliminerar emellertid endast delvis felprissättningen och leder i stället till ett överdrivet prismomentum som till sist kulminerar i en överreaktion. (Hong & Stein 1999)

### 3.5.4 Arbitragebegränsningar

Det är värt att notera att en teoretisk möjlighet till att göra arbitragevinster på intet sätt är det samma som en praktisk möjlighet. Enligt ett beteendevetenskapligt synsätt uppkommer de abnorma vinsterna från momentumeffekten på grund av att de antaganden som görs i EMH inte håller i praktiken, vilket gör det omöjligt att fullt ut dra nytta av en teoretisk felprissättning. Arbitragebegränsningar innebär att marknadsaktörerna i vissa situationer inte klarar av att eliminera felprissättningar på marknaden på grund av handelsfriktioner. Sådana handelsfriktioner inkluderar bl.a. höga handelskostnader, låg likviditet och begränsningar gällande blankning. Även om marknadsaktörer har information om en felprissättning så kan arbitragebegränsningar innebära att de inte kan dra nytta av den informationen för att tillskansa sig abnorma vinster i praktiken eftersom t.ex. höga transaktionskostnader eliminerar den vinst man skulle ha fått. En svag momentumeffekt kan potentiellt förklaras av arbitragebegränsningar på marknaden ifråga. Ett flertal studier (bl.a. Griffin & Lemmon 2002; Avramov, Chordia, Jostova & Philipov 2009) drar slutsatsen att många anomalier är ett resultat av arbitragebegränsningar. (Haga 2016)

### 3.5.5 Kombination av rationella och beteendevetenskapliga förklaringsmodeller

Avsaknaden av en allmänt accepterad förklaring på momentumeffekten har lett en del forskare till att formulera teorier och modeller i försök att förena rationella och beteendevetenskapliga förklarningar, då dessa enskilt endast delvis har kunnat förklara momentumeffekten. Exempelvis Rachwalski och Wen (2012) drar slutsatsen att både
risk och underreaktion, alltså både rationella och beteendevetenskapliga förklaringar, tycks spela betydande roller när det gäller att förklara momentumstrategiers lönsamhet.


4 DATA OCH METOD

4.1 Data


4.2 Metod


Vid studier av momentumeffekten är det även allmänt vedertaget att ignorera den senaste månaden vid konstruktion av momentumportföljerna (Fama & French, 2012).


Utifrån denna serie avkastningar räknas sedan en medelavkastning ut för varje portfölj samt portföljernas standardavvikelse och medelavkastningarnas z-statistikor. Z-statistikorna beräknas med nollhypotesen att momentum inte påverkar de kumulativa avkastningarnas medeltal och mothypotesen att de påverkar detta medeltal positivt. Utifrån dessa z-statistikor beräknas sedan ensidiga p-värden. Slutligen beräknas också portföljernas Sharpe kvoter enligt följande formel:
\[ SR = \frac{(r_p - r_f)}{\sigma_p} \]

där \( r_p \) = portföljens medelavkastning, \( r_f \) = den riskfria avkastningen och \( \sigma_p \) = portföljens standardavvikelse. Som approximation för den riskfria räntan över perioden används medeltalet av tolv månaders Euribor för den undersökta tidsperioden dividerat med tolv.

För att undersöka effekten av momentum för olika tidsperioder upprepas dessa uträkningar sedan med olika värden på överhoppningsperioden (0–18 månader). Då uträkningarna utförs utan överhoppningsperiod testas inverkan av en potentiell kortsiktig contrarianeffekt på resultatet och då överhoppningsperioden är längre än 1 månad testas momentumeffektens inverkan på tidsperioder längre fram och även huruvida en långsiktig contrarianeffekt tycks påverka resultatet. Novy-Marx (2012) utför liknande studier vars resultat är lättöverskådliga i grafisk form.

Även storleken av avkastningen från andra kombinationer av momentumportföljer än portfölj 5 minus portfölj 1 undersöks och jämförs. Ifall avkastningen från momentumportföljen är störst och avkastningarna sänks gradvis då de två jämförda portföljerna kommer närmare varandra med avkastningen från två närbelägna portföljer som den minsta, stöder det ett antagande om en stark momentumeffekt. I de fall där detta inte blir resultatet kan momentumeffekten anses svagare.
5 RESULTAT

I detta kapitel presenteras resultaten av de undersökningar som beskrivits i föregående kapitel. I redogörelsen för resultaten benämns de olika strategierna enligt antal portföljer och längd på sorteringsperioden. De första strategierna är 5p11s-strategier, vilka använder fem portföljer och en sorteringsperiod på 11 månader. Längden på överhoppningsperioderna förkortas xOP, där x står för ett tal från 0 till 18 som anger antalet månader i överhoppningsperioden. Vid jämförelsen mellan strategier som håller och blankar olika portföljer benämns momentumstrategin, där portfölj 5 utgör vinnarportföljen och portfölj 1 utgör förlorarportföljen, som 5-1-strategin. Övriga kombinationer av vinnar- och förlorarportföljer benämns på motsvarande sätt. T.ex. så benämns strategin där portfölj 3 hålls och portfölj 2 blankas som 3-2-strategin. I tabellerna och graferna används * för att beteckna signifikans med en signifikansnivå på 5 % och ** för att beteckna signifikans med en signifikansnivå på 1 %.

5.1 Fem portföljer, sorteringsperiod på 11 månader (5p11s)

I tabell 1 nedan presenteras resultatet av undersökningen med fem portföljer, en sorteringsperiod på 11 månader, en överhoppningsperiod på 1 månad och en innehavsperiod på 1 månad. Av de testade längderna på överhoppningsperioden är det med denna som momentumstrategin avkastar som högst och mest signifikant (se figur 1). Kolumnerna i tabellen visar resultaten för olika portföljer. Portfölj 1 är "förlorarportföljen" d.v.s. den portfölj som varje månad byggs upp av de 20 % av företagen på marknaden som under de senaste tolv månaderna (exkluderande den förra) i medeltal har avkastat sämst. Portfölj 2 består sedan av följande sämst presterande femtedel och så vidare. Portfölj 5 är "vinnarportföljen" och är uppbyggd på samma sätt som portfölj 1, men med de bäst presterande företagens aktier i stället för de sämst presterandes. Momentumportföljen (Mom.) är den mest intressanta ur undersökningens perspektiv och är den portfölj som erhålls om en investerare håller vinnarportföljen och blankar förlorarportföljen. Momentumportföljens avkastning är därmed skillnaden i avkastning mellan förlorar- och vinnarportföljen. Ifall denna avkastning är signifikant olika med noll innebär det att det finns en signifikant skillnad mellan förlorar- och vinnarportföljen och att mervärde kan fås genom tillämpning av en momentumstrategi.
Tabell 1 Resultat med 1 månads överhoppningsperiod (5p11s)

<table>
<thead>
<tr>
<th></th>
<th>Portfölj 1</th>
<th>Portfölj 2</th>
<th>Portfölj 3</th>
<th>Portfölj 4</th>
<th>Portfölj 5</th>
<th>Mom. (5-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medeltal i %</td>
<td>0,385</td>
<td>0,794</td>
<td>1,242</td>
<td>1,515</td>
<td>1,629</td>
<td>1,244</td>
</tr>
<tr>
<td>St. av.</td>
<td>7,283</td>
<td>5,609</td>
<td>5,048</td>
<td>5,014</td>
<td>6,022</td>
<td>5,128</td>
</tr>
<tr>
<td>Varians</td>
<td>53,039</td>
<td>31,458</td>
<td>25,483</td>
<td>25,140</td>
<td>36,266</td>
<td>26,299</td>
</tr>
<tr>
<td>Z-statistika</td>
<td>0,686</td>
<td>1,834</td>
<td>3,190</td>
<td>3,917</td>
<td>3,506</td>
<td>3,143</td>
</tr>
<tr>
<td>P-värde</td>
<td>0,246</td>
<td>0,033</td>
<td>0,001</td>
<td>0,000</td>
<td>0,000</td>
<td>0,001</td>
</tr>
<tr>
<td>Sharpe-kvot</td>
<td>0,030</td>
<td>0,111</td>
<td>0,213</td>
<td>0,269</td>
<td>0,242</td>
<td>0,210</td>
</tr>
</tbody>
</table>

Tabell 1 visar mycket riktigt att det finns en skillnad i medelavkastningen för portfölj 1 (0,385 %) och portfölj 5 (1,629 %) och att portföljerna däremellan avkastar mer för varje steg mot vinnarportföljen. Momentumportföljens medelavkastning för den undersökta perioden är 1,244 %. Under nollhypotesen att momentumportföljen har en avkastning som inte signifikant skiljer sig från noll fås en z-statistika på 3,143, vilket ger ett p-värde på 0,001. Nollhypotesen kan därmed förkastas på alla rimliga signifikansnivåer. Sharpe-kvoten är också positiv och ökar stegvis från portfölj 1 (0,030) till portfölj 5 (0,242), med undantag av att den är större för portfölj 4 (0,269) än för den sista portföljen. Sharpe kvoten för momentumportföljen är 0,210. Standardavvikelsen är störst för förlorarportföljen (7,283), näst störst för vinnarportföljen (6,022). Momentumportföljen har en standardavvikelse som ligger nära de lägsta standardavvikelserna (5,128, att jämföra med 5,048 för portfölj 3 och 5,014 för portfölj 4).

Resultaten för momentumportföljerna i undersökningarna med olika längd på överhoppningsperioden presenteras sammanfattat i tabell 2 nedan. Figurerna 1 och 2 illustrerar resultaten för medeltal och Sharpe-kvoter grafiskt.
Tabell 2  
Resultat för olika överhoppningsperioder (5p11s)

<table>
<thead>
<tr>
<th>Längd på ÖP (mån)</th>
<th>Medeltal (%)</th>
<th>St.av.</th>
<th>Z-statistika</th>
<th>P-värde</th>
<th>Sharpe-kvot</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,937</td>
<td>5,163</td>
<td>2,360</td>
<td>0,009**</td>
<td>0,149</td>
</tr>
<tr>
<td>1</td>
<td>1,244</td>
<td>5,128</td>
<td>3,143</td>
<td>0,001**</td>
<td>0,210</td>
</tr>
<tr>
<td>2</td>
<td>1,089</td>
<td>5,264</td>
<td>2,672</td>
<td>0,004**</td>
<td>0,175</td>
</tr>
<tr>
<td>3</td>
<td>0,775</td>
<td>4,978</td>
<td>2,007</td>
<td>0,022*</td>
<td>0,122</td>
</tr>
<tr>
<td>4</td>
<td>0,629</td>
<td>5,020</td>
<td>1,609</td>
<td>0,054</td>
<td>0,092</td>
</tr>
<tr>
<td>5</td>
<td>0,382</td>
<td>5,533</td>
<td>0,884</td>
<td>0,188</td>
<td>0,039</td>
</tr>
<tr>
<td>6</td>
<td>0,228</td>
<td>5,542</td>
<td>0,525</td>
<td>0,300</td>
<td>0,011</td>
</tr>
<tr>
<td>7</td>
<td>0,172</td>
<td>5,415</td>
<td>0,405</td>
<td>0,343</td>
<td>0,001</td>
</tr>
<tr>
<td>8</td>
<td>0,049</td>
<td>5,449</td>
<td>0,115</td>
<td>0,454</td>
<td>-0,022</td>
</tr>
<tr>
<td>9</td>
<td>0,040</td>
<td>5,441</td>
<td>0,092</td>
<td>0,463</td>
<td>-0,024</td>
</tr>
<tr>
<td>10</td>
<td>-0,175</td>
<td>5,153</td>
<td>-0,427</td>
<td>0,335</td>
<td>-0,067</td>
</tr>
<tr>
<td>11</td>
<td>0,213</td>
<td>5,220</td>
<td>0,514</td>
<td>0,304</td>
<td>0,009</td>
</tr>
<tr>
<td>12</td>
<td>-0,103</td>
<td>5,229</td>
<td>-0,246</td>
<td>0,403</td>
<td>-0,052</td>
</tr>
<tr>
<td>13</td>
<td>0,287</td>
<td>5,196</td>
<td>0,689</td>
<td>0,245</td>
<td>0,023</td>
</tr>
<tr>
<td>14</td>
<td>-0,006</td>
<td>5,010</td>
<td>-0,015</td>
<td>0,494</td>
<td>-0,035</td>
</tr>
<tr>
<td>15</td>
<td>0,004</td>
<td>5,013</td>
<td>0,011</td>
<td>0,496</td>
<td>-0,033</td>
</tr>
<tr>
<td>16</td>
<td>0,191</td>
<td>4,901</td>
<td>0,482</td>
<td>0,315</td>
<td>0,005</td>
</tr>
<tr>
<td>17</td>
<td>0,346</td>
<td>4,609</td>
<td>0,925</td>
<td>0,178</td>
<td>0,038</td>
</tr>
<tr>
<td>18</td>
<td>0,335</td>
<td>4,729</td>
<td>0,871</td>
<td>0,192</td>
<td>0,035</td>
</tr>
</tbody>
</table>

Ur figur 1 kan utläsas hur en momentumstrategi med fem portföljer, en 11 månader lång sorteringsperiod och en innehavsperiod på en månad presterat med 0ÖP–18ÖP. Det högsta värdet på medelavkastningarna fås med 1ÖP (1,244 %), följd av medelavkastningarna med 2ÖP (1,089 %) och 0ÖP (0,937 %). Efter resultatet med 1ÖP minskas momentumstrategins avkastning stegvis fram till det lägsta resultatet i undersökningen, vilket erhölls med 10ÖP (-0,175 %). Också resultatet med 12ÖP (-0,103 %) och 14ÖP (-0,006) är negativa, om än inte mycket. Alla övriga resultat efter 5ÖP är positiva och lägre än 0,4 %. Standardavvikelsen varierar inte nämnvärt för de olika längderna på överhoppningsperioden utan alla värden ligger relativt nära ett medelvärde på ca 5,2.
Figur 1  Momentumstrategins prestation med olika överhoppningsperioder (5p11s)

Som framgår ur grafen är det endast med 0ÖP–3ÖP som momentumavkastningarna är signifikanta på en 5 % signifikansnivå (4 månader ligger nära med ett p-värde på 0,054). Med en signifikansnivå på 10 % är det endast resultatet för 4ÖP som tillkommer. Det mest signifikanta resultatet uppnås med 1ÖP, men även resultatet för 0ÖP och 2ÖP är signifikanta med en signifikansnivå på 1 %. Inget av de negativa resultaten är signifikanta.

I tabell 3 visas vilka tre investeringsstrategier där en av de momentumsorterade portföljerna hålls och en av portföljerna blankas som gav störst avkastning i undersökningen. Den bäst avkastande strategin kommer att benämnas den ”största” strategin, den näst bäst avkastande kommer att benämnas den ”näst största” strategin o.s.v. Resultatet presenteras för olika längder på överhoppningsperioden (0–18ÖP). Ur tabellen kan utläsas att momentumstrategin (5-1) var den strategi som genererat störst avkastning för den längd på överhoppningsperioden då strategierna var som mest signifikanta (0–3ÖP) och att strategin då var signifikant med en signifikansnivå på 1 %, förutom med 3ÖP då strategin var signifikant med en signifikansnivå på 5 %. Detta är de enda gånger som 5-1-strategin förekommer som signifikant strategi i tabellen.
Tabell 3  
Storleksordning på avkastningar för olika portföljkombinationer (5p11s)

<table>
<thead>
<tr>
<th>ÖP</th>
<th>Störst</th>
<th>Näst störst</th>
<th>Tredje störst</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5-1**</td>
<td>3-2*</td>
<td>4-1*</td>
</tr>
<tr>
<td>1</td>
<td>5-1**</td>
<td>4-1**</td>
<td>3-2**</td>
</tr>
<tr>
<td>2</td>
<td>5-1**</td>
<td>3-2**</td>
<td>4-1**</td>
</tr>
<tr>
<td>3</td>
<td>5-1*</td>
<td>3-2**</td>
<td>4-1*</td>
</tr>
<tr>
<td>4</td>
<td>5-1</td>
<td>2-1*</td>
<td>4-1</td>
</tr>
<tr>
<td>5</td>
<td>5-1</td>
<td>4-1</td>
<td>3-2</td>
</tr>
<tr>
<td>6</td>
<td>5-2</td>
<td>3-1</td>
<td>5-1</td>
</tr>
<tr>
<td>7</td>
<td>5-1</td>
<td>5-2</td>
<td>5-3</td>
</tr>
<tr>
<td>8</td>
<td>1-3*</td>
<td>5-3</td>
<td>2-3</td>
</tr>
<tr>
<td>9</td>
<td>3-4</td>
<td>3-1</td>
<td>5-4</td>
</tr>
<tr>
<td>10</td>
<td>2-5</td>
<td>4-5</td>
<td>1-5</td>
</tr>
<tr>
<td>11</td>
<td>5-4</td>
<td>5-1</td>
<td>3-4</td>
</tr>
<tr>
<td>12</td>
<td>1-3*</td>
<td>4-3*</td>
<td>2-3</td>
</tr>
<tr>
<td>13</td>
<td>3-4*</td>
<td>3-2</td>
<td>2-4</td>
</tr>
<tr>
<td>14</td>
<td>4-3*</td>
<td>4-5*</td>
<td>4-1</td>
</tr>
<tr>
<td>15</td>
<td>2-1</td>
<td>2-5</td>
<td>4-1</td>
</tr>
<tr>
<td>16</td>
<td>3-4*</td>
<td>3-2</td>
<td>2-4</td>
</tr>
<tr>
<td>17</td>
<td>2-1*</td>
<td>2-4</td>
<td>3-2</td>
</tr>
<tr>
<td>18</td>
<td>2-1*</td>
<td>4-1</td>
<td>3-2</td>
</tr>
</tbody>
</table>

Ingen annan strategi än momentumstrategin var någonsin både störst och signifikant med en signifikansnivå på 1 %. Strategierna 3-2 och 4-1 var emellertid alltid de näst eller tredje största strategierna då 5-1-strategin var den största och var då flera gånger signifikanta med en signifikansnivå på 1 %. Ingen annan strategi utöver dessa två var någonsin bland de näst eller tredje största och signifikanta med en signifikansnivå på 1 %. De enda strategier utöver momentumstrategin som någon gång var de största och signifikanta med en signifikansnivå på 5 % dyker upp i tabellen vid 8ÖP och senare. Detta är strategierna 1-3, 2-1, 3-4 och 4-3. Strategierna 2-1, 3-2, 4-1, 4-3 och 4-5 är näst eller tredje störst någon gång i tabellen och signifikanta med en signifikansnivå på 5 %. Inga av de övriga strategierna i tabellen var signifikanta.

5.2 Fem portföljer, sorteringsperiod på 5 månader (5p5s)

Resultatet för undersökningen med fem portföljer, en sorteringsperiod på 5 månader, en överhoppningsperiod på 2 månader och en innehavsperrid på 1 månad presenteras i
tabell 4 nedan. Tabellen är utformad på samma sätt som tabell 1. Liksom för de förra strategierna (5p11s) är avkastningen med 1ÖP en av de största (se figur 3). Emellertid är avkastningen och signifikansen för en strategi med en 2ÖP ännu något större, varför resultatet för en sådan strategi presenteras i tabell 4. Också här är momentumportföljen (Mom.) den väsentligaste delen av tabellen, då en signifikant avkastning från denna portfölj tyder på att mervärde kan fås genom tillämpning av en momentumstrategi.

Tabell 4  
Resultat med en 2 månaders överhoppningsperiod (5p5s)

<table>
<thead>
<tr>
<th>Statistik</th>
<th>Portfölj 1</th>
<th>Portfölj 2</th>
<th>Portfölj 3</th>
<th>Portfölj 4</th>
<th>Portfölj 5</th>
<th>Mom. (1-5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medeltal i %</td>
<td>0,254</td>
<td>0,849</td>
<td>1,211</td>
<td>1,393</td>
<td>1,574</td>
<td>1,320</td>
</tr>
<tr>
<td>St. av.</td>
<td>6,718</td>
<td>5,415</td>
<td>5,465</td>
<td>5,282</td>
<td>5,951</td>
<td>4,792</td>
</tr>
<tr>
<td>Varians</td>
<td>45,136</td>
<td>29,324</td>
<td>29,871</td>
<td>27,897</td>
<td>35,416</td>
<td>22,959</td>
</tr>
<tr>
<td>Z-statistika</td>
<td>0,497</td>
<td>2,063</td>
<td>2,914</td>
<td>3,469</td>
<td>3,478</td>
<td>3,623</td>
</tr>
<tr>
<td>P-värde</td>
<td>0,310</td>
<td>0,020</td>
<td>0,002</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>Sharpe-kvot</td>
<td>0,013</td>
<td>0,126</td>
<td>0,191</td>
<td>0,232</td>
<td>0,236</td>
<td>0,240</td>
</tr>
</tbody>
</table>

Ur tabell 4 kan utläsas att resultatet för denna undersökning ligger nära det resultat som presenterades som det bäst avkastande för 5p11s-strategierna. Portfölj 2 undantaget så är medelavkastningarna och z-statistikorna något lägre för de enskilda portföljerna (något högre för portfölj 2), medan momentumportföljen avkastar lite bättre (jfr 1,244 % och 1,320 %) och har högre signifikans (jfr en z-statistika på 3,143 med en på 3,623). Då den tidigare strategin konstaterats signifikant på alla rimliga signifikansnivåer kan därmed samma slutsats dras även för denna och nollhypotesen att momentumportföljen har en avkastning som inte signifikant skiljer sig från noll kan därmed förkastas. Förlorarportföljen har klart lägst medelavkastning (0,254 %), vinnarportföljen har klart högst (1,574 %) och avkastningen för portföljerna däremellan stiger stegvis. Också Sharpe-kvoten ökar steg för stag från portfölj 1 (0,013) till portfölj 5 (0,236) och är som allra störst för momentumportföljen (0,240). Standardavvikelsen är störst för portfölj 1 (6,718), näst störst för portfölj 5 (5,951) och lägst för momentumportföljen (4,792). För övriga portföljer ligger standardavvikelsen mellan 5,2 och 5,5.

Resultaten för momentumportföljerna i undersökningarna med olika längd på överhoppningsperioden presenteras sammanfattat i tabell 5 nedan. Figurerna 3 och 4 åskådliggör grafiskt undersökningens resultat för medeltal och Sharpe-kvoter.
Det högsta värdet på medelavkastningarna i tabell 5 och figur 3 erhålls med 2ÖP (1,320 %). De därpå största resultaten fås med 1ÖP (1,261 %), 3ÖP (1,217 %) och 5ÖP (0,871 %). 0ÖP ger det femte största resultatet (0,865 %). Alla resultat mellan 0ÖP och 10 ÖP är positiva och större än 0,5 %. Resultatet med 11ÖP (0,064 %) är smått positivt och resultaten med 12ÖP – 18ÖP är alla negativa. Det minsta värdet på momentumstrategins medelavkastning fås med 15ÖP (-0,603 %). Också med 12ÖP (-0,522 %) och 14ÖP (-0,541 %) är avkastningen lägre än -0,5 %. De övriga negativa avkastningarna rör sig närmare nollstrecket. Standardavvikelsen tycks inte variera nämnvärt för de olika längderna på överhoppningsperioden utan alla värden ligger relativt nära ett medelvärde på ca 4,8.
Inte heller den här gången är emellertid de negativa resultaten signifikanta. Dock finns det fler positiva signifikanta resultat än för 5p11s-strategierna. Medelavkastningarna för strategier med 0ÖP–5ÖP och 7ÖP–8ÖP är alla signifikanta med en signifikansnivå på 5 %. Resultaten med 1ÖP–3ÖP och 5ÖP är dessutom signifikanta med en signifikansnivå på 1 %. Det mest signifikanta resultatet är det största, det med 2ÖP.

I tabell 6 framgår att strategin 5-1 var en av de tre bäst avkastande strategierna med 0ÖP–10ÖP. Med 1ÖP–3ÖP var 5-1-strategin den bäst avkastande och signifikant med en signifikansnivå på 1 %. Med 0ÖP, 4ÖP och 7ÖP var avkastningen från 5-1-strategin den näst största och signifikant med en signifikansnivå på 5 % och med 5ÖP var avkastningen näst störst och signifikant med en signifikansnivå på 1 %. Den enda andra gången som 5-1-strategin var signifikant och bland de tre bäst avkastande strategierna var med 8ÖP då strategin hade den tredje största avkastningen och var signifikant med en signifikansnivå på 5 %.

**Figur 4**  Sharpe-kvoten med olika överhoppningsperioder (5p5s)
Tabell 6  Storleksordning på avkastningar för olika portföljkombinationer (5p5s)

<table>
<thead>
<tr>
<th>ÖP</th>
<th>Störst</th>
<th>Näst störst</th>
<th>Tredje störst</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4-1**</td>
<td>5-1*</td>
<td>4-2**</td>
</tr>
<tr>
<td>1</td>
<td>5-1**</td>
<td>5-2**</td>
<td>4-1**</td>
</tr>
<tr>
<td>2</td>
<td>5-1**</td>
<td>4-1**</td>
<td>3-2**</td>
</tr>
<tr>
<td>3</td>
<td>5-1**</td>
<td>5-2**</td>
<td>5-3**</td>
</tr>
<tr>
<td>4</td>
<td>5-2**</td>
<td>5-1*</td>
<td>3-1**</td>
</tr>
<tr>
<td>5</td>
<td>4-1**</td>
<td>5-1**</td>
<td>3-2**</td>
</tr>
<tr>
<td>6</td>
<td>4-1*</td>
<td>5-1</td>
<td>2-1</td>
</tr>
<tr>
<td>7</td>
<td>4-1**</td>
<td>5-1*</td>
<td>3-2</td>
</tr>
<tr>
<td>8</td>
<td>4-1**</td>
<td>2-1**</td>
<td>5-1</td>
</tr>
<tr>
<td>9</td>
<td>5-2*</td>
<td>4-2*</td>
<td>5-1</td>
</tr>
<tr>
<td>10</td>
<td>5-1</td>
<td>5-2*</td>
<td>3-2</td>
</tr>
<tr>
<td>11</td>
<td>5-2</td>
<td>1-2</td>
<td>5-3</td>
</tr>
<tr>
<td>12</td>
<td>1-5</td>
<td>4-5*</td>
<td>1-2</td>
</tr>
<tr>
<td>13</td>
<td>3-5</td>
<td>3-1</td>
<td>3-4</td>
</tr>
<tr>
<td>14</td>
<td>1-5</td>
<td>3-5*</td>
<td>1-2</td>
</tr>
<tr>
<td>15</td>
<td>1-5</td>
<td>1-2</td>
<td>2-3</td>
</tr>
<tr>
<td>16</td>
<td>3-5</td>
<td>2-5</td>
<td>1-5</td>
</tr>
<tr>
<td>17</td>
<td>3-1*</td>
<td>4-2</td>
<td>1-2</td>
</tr>
<tr>
<td>18</td>
<td>4-3</td>
<td>2-3</td>
<td>1-3</td>
</tr>
</tbody>
</table>

De enda strategierna förutom 5-1-strategin som någon gång var både bäst avkastande och signifikanta med en signifikansnivå på 1 % var strategierna 4-1 (med 0ÖP, 5ÖP och 7ÖP–8ÖP) och 5-2 (med 4ÖP). Dessa två strategier var även näst eller tredje störst och signifikanta med en signifikansnivå på 1 % flera gånger när momentumstrategin var den bäst avkastande. Den enda strategin som utöver dessa tre någon gång är den näst största och signifikant med en signifikansnivå på 1 % är 2-1-strategin med 8ÖP. Motsvarande bland strategierna som någon gång var de tredje största är strategierna 3-1, 3-2, 4-2 och 5-3. De strategier utöver momentumstrategin som någon gång tillkom som signifikanta då signifikansnivån utökas från 1 % till 5 % var strategierna 3-1, 4-1 och 5-2 för de största strategierna; strategierna 3-5, 4-2, 4-5 och 5-2 för de näst största strategierna och strategin 3-2 för de tredje största strategierna. Inga av de övriga strategierna i tabellen var signifikanta.
5.3 Fem portföljer, sorteringsperiod på 1 månad (5p1s)

Nedan i tabell 7 presenteras resultatet för undersökningen med fem portföljer, en sorteringsperiod på 1 månad, en överhoppningsperiod på 2 månader och en innehavsperiod på 1 månad. Tabellen är utformad på samma sätt som tabell 1 och en signifikant avkastning från momentumportföljen tyder på att mervärde kan fås genom tillämpning av en momentumstrategi. En överhoppningsperiod på 2 månader ger den största och mest signifikanta avkastningen för momentumstrategin, såsom framgår ur figur 5.

Tabell 7 Resultat med en 2 månaders överhoppningsperiod (5p1s)

<table>
<thead>
<tr>
<th>Statisik</th>
<th>Portfölj 1</th>
<th>Portfölj 2</th>
<th>Portfölj 3</th>
<th>Portfölj 4</th>
<th>Portfölj 5</th>
<th>Mom. (1-5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medeltal i %</td>
<td>0,227</td>
<td>0,823</td>
<td>1,132</td>
<td>1,126</td>
<td>1,526</td>
<td>1,300</td>
</tr>
<tr>
<td>St. av.</td>
<td>6,623</td>
<td>5,706</td>
<td>5,048</td>
<td>5,089</td>
<td>5,948</td>
<td>4,445</td>
</tr>
<tr>
<td>Z-statistika</td>
<td>0,456</td>
<td>1,920</td>
<td>2,984</td>
<td>2,945</td>
<td>3,414</td>
<td>3,890</td>
</tr>
<tr>
<td>P-värde</td>
<td>0,324</td>
<td>0,027</td>
<td>0,001</td>
<td>0,002</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>Sharpe-kvot</td>
<td>0,009</td>
<td>0,115</td>
<td>0,191</td>
<td>0,188</td>
<td>0,228</td>
<td>0,254</td>
</tr>
</tbody>
</table>

Resultaten som presenteras i tabell 7 är för nästan alla värden lite lägre än motsvarande resultat för 5p5s-strategierna. Momentumportföljens medelavkastning landar på 1,3 % och är signifikant på alla rimliga signifikansnivåer. Nollhypotesen kan därmed förkastas. Förloparportföljen har lägst medelavkastning (0,227 %) och vinnarportföljen har högst (1,526 %). Avkastningarna däremellan stiger stegvis med undantag för portfölj 4 (1,126 %) som avkastar mindre än portfölj 3 (1,132 %). Sharpe-kvoterna för portföljerna håller samma storleksförhållanden som medelavkastningarna, bortsett från att momentumportföljen har den högsta Sharpe kvoten (0,254). Standardavvikelsen är störst för portfölj 1 (6,623), näst störst för portfölj 5 (5,948), tredje störst för portfölj 2 (5,706) och lägst för momentumportföljen (4,445). För övriga portföljer ligger standardavvikelsen mellan 5,0 och 5,1.

Resultaten för momentumportföljerna i undersökningarna med olika längd på överhoppningsperioden presenteras sammanfattat i tabell 8 nedan. Figurerna 5 och 6 åskådliggör grafiskt undersökningens resultat för medeltal och Sharpe-kvoter. Resultat för olika överhoppningsperioder (5p1s)
Tabell 8  Resultat för olika överhoppningsperioder (5p1s)

<table>
<thead>
<tr>
<th>Längd på ÖP (mån)</th>
<th>Medeltal (%)</th>
<th>St.av.</th>
<th>Z-statistika</th>
<th>P-värde</th>
<th>Sharpe-kvot</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0,324</td>
<td>4,648</td>
<td>-0,932</td>
<td>0,176</td>
<td>-0,106</td>
</tr>
<tr>
<td>1</td>
<td>0,529</td>
<td>4,234</td>
<td>1,668</td>
<td>0,048*</td>
<td>0,085</td>
</tr>
<tr>
<td>2</td>
<td>1,300</td>
<td>4,445</td>
<td>3,890</td>
<td>0,000**</td>
<td>0,254</td>
</tr>
<tr>
<td>3</td>
<td>0,899</td>
<td>4,561</td>
<td>2,616</td>
<td>0,004**</td>
<td>0,160</td>
</tr>
<tr>
<td>4</td>
<td>-0,128</td>
<td>3,656</td>
<td>-0,464</td>
<td>0,321</td>
<td>-0,081</td>
</tr>
<tr>
<td>5</td>
<td>0,393</td>
<td>4,117</td>
<td>1,258</td>
<td>0,104</td>
<td>0,054</td>
</tr>
<tr>
<td>6</td>
<td>0,199</td>
<td>3,665</td>
<td>0,714</td>
<td>0,237</td>
<td>0,008</td>
</tr>
<tr>
<td>7</td>
<td>0,915</td>
<td>4,013</td>
<td>2,989</td>
<td>0,001**</td>
<td>0,186</td>
</tr>
<tr>
<td>8</td>
<td>0,255</td>
<td>3,704</td>
<td>0,901</td>
<td>0,184</td>
<td>0,023</td>
</tr>
<tr>
<td>9</td>
<td>0,297</td>
<td>4,308</td>
<td>0,899</td>
<td>0,184</td>
<td>0,030</td>
</tr>
<tr>
<td>10</td>
<td>0,263</td>
<td>3,700</td>
<td>0,926</td>
<td>0,177</td>
<td>0,026</td>
</tr>
<tr>
<td>11</td>
<td>0,525</td>
<td>3,676</td>
<td>1,852</td>
<td>0,032*</td>
<td>0,097</td>
</tr>
<tr>
<td>12</td>
<td>-0,015</td>
<td>3,623</td>
<td>-0,052</td>
<td>0,479</td>
<td>-0,051</td>
</tr>
<tr>
<td>13</td>
<td>0,205</td>
<td>3,817</td>
<td>0,692</td>
<td>0,244</td>
<td>0,010</td>
</tr>
<tr>
<td>14</td>
<td>0,142</td>
<td>4,041</td>
<td>0,452</td>
<td>0,326</td>
<td>-0,007</td>
</tr>
<tr>
<td>15</td>
<td>-0,099</td>
<td>4,416</td>
<td>-0,288</td>
<td>0,387</td>
<td>-0,061</td>
</tr>
<tr>
<td>16</td>
<td>-0,301</td>
<td>4,502</td>
<td>-0,854</td>
<td>0,197</td>
<td>-0,104</td>
</tr>
<tr>
<td>17</td>
<td>-0,221</td>
<td>4,179</td>
<td>-0,673</td>
<td>0,251</td>
<td>-0,093</td>
</tr>
<tr>
<td>18</td>
<td>-0,390</td>
<td>3,993</td>
<td>-1,240</td>
<td>0,107</td>
<td>-0,140</td>
</tr>
</tbody>
</table>

Det största resultatet i tabell 8 och figur 5 är det med 2ÖP (1,3%), följt av resultaten med 7ÖP (0,915%) och 3ÖP (0,899%), vilka ligger relativt nära varandra. 0ÖP ger här ett negativt resultat (-0,324%) och 1ÖP ger de fjärde största positiva resultatet (0,529%). Med undantag för resultatet med 11ÖP (0,525%) är övriga resultat antingen positiva och mindre än 0,4% eller negativa och större än -0,4%. De sista fyra resultaten är alla negativa. Det minsta värdet på momentumstrategins medelavkastning är med 18ÖP (-0,390%). Standardavvikelsen tycks variera mer än vid de kortare överhoppningsperioderna, men ändras ändå inte mycket. Som minst är standardavvikelsen 3,623 med 12ÖP och som mest är den 4,648 med 0ÖP, medelvärdet är ca 4,1.
Det finns ungefär lika många signifikanta resultat som för 5p11s-strategin, men de är mer utspridda. De största resultaten är de mest signifikanta och inga av de negativa resultaten är signifikanta. Medelavkastningarna för strategier med 2ÖP, 3ÖP och 7ÖP är signifikanta med en signifikansnivå på 1% och även medelavkastningarna för strategier med 1ÖP och 11ÖP är signifikanta med en signifikansnivå på 5%.

Figur 6 är lik den föregående figuren. Den största skillnaden är att resultatet för 14ÖP här är smätt negativt istället för smätt positivt och att de negativa resultaten är tydligare. Storleksordningen håller i stort sätt, bortsätt från att några närliggande resultat (t.ex. de för 1ÖP och 11ÖP) byter plats. Strategin med 12ÖP hade inte bara högst medelavkastning utan också högst lönsamhet enligt Sharpe-kvoterna.
Från tabell 9 kan utläsas att de gånger som 5-1-strategin var den bäst avkastande strategin och signifikant med en signifikansnivå på 1% var vid 2ÖP, 3ÖP och 7ÖP. Detta var de enda gånger som de två bäst avkastande strategierna var signifikanta med en signifikansnivå på 1% (de tre bäst avkastande strategierna med 2ÖP och 3ÖP). 5-1-strategin hade störst avkastning och var signifikant med en 5 procents signifikansnivå även med 11ÖP. Den enda andra gången som 5-1-strategin var signifikant och bland de tre bäst avkastande strategierna var med 1ÖP då strategin hade den tredje största avkastningen och var signifikant med en signifikansnivå på 5%.
Tabell 9  Storleksordning på avkastningar för olika portföljkombinationer (5p1s)

<table>
<thead>
<tr>
<th>ÖP</th>
<th>Störst</th>
<th>Näst störst</th>
<th>Tredje störst</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1-4</td>
<td>2-4</td>
<td>1-5</td>
</tr>
<tr>
<td>1</td>
<td>3-2*</td>
<td>4-1*</td>
<td>5-1*</td>
</tr>
<tr>
<td>2</td>
<td>5-1**</td>
<td>3-2**</td>
<td>4-1**</td>
</tr>
<tr>
<td>3</td>
<td>5-1**</td>
<td>5-2**</td>
<td>4-1**</td>
</tr>
<tr>
<td>4</td>
<td>4-3*</td>
<td>4-5</td>
<td>4-2</td>
</tr>
<tr>
<td>5</td>
<td>3-2*</td>
<td>2-1*</td>
<td>4-1*</td>
</tr>
<tr>
<td>6</td>
<td>4-1*</td>
<td>4-3*</td>
<td>4-5*</td>
</tr>
<tr>
<td>7</td>
<td>5-1**</td>
<td>4-1**</td>
<td>3-1*</td>
</tr>
<tr>
<td>8</td>
<td>2-1</td>
<td>3-2</td>
<td>5-1</td>
</tr>
<tr>
<td>9</td>
<td>4-3**</td>
<td>5-3*</td>
<td>4-1</td>
</tr>
<tr>
<td>10</td>
<td>4-2*</td>
<td>4-1</td>
<td>5-2</td>
</tr>
<tr>
<td>11</td>
<td>5-1*</td>
<td>4-1*</td>
<td>5-3</td>
</tr>
<tr>
<td>12</td>
<td>2-4</td>
<td>2-5</td>
<td>2-1</td>
</tr>
<tr>
<td>13</td>
<td>5-3</td>
<td>5-4</td>
<td>5-1</td>
</tr>
<tr>
<td>14</td>
<td>5-3</td>
<td>5-2</td>
<td>5-4</td>
</tr>
<tr>
<td>15</td>
<td>4-3*</td>
<td>4-2</td>
<td>4-5</td>
</tr>
<tr>
<td>16</td>
<td>1-5</td>
<td>2-5</td>
<td>2-3</td>
</tr>
<tr>
<td>17</td>
<td>2-3</td>
<td>1-2</td>
<td>1-5</td>
</tr>
<tr>
<td>18</td>
<td>1-5</td>
<td>1-4</td>
<td>2-5</td>
</tr>
</tbody>
</table>

Den enda strategin utöver 5-1-strategin som för någon längd på överhoppningsperioden var både störst och signifikant med en signifikansnivå på 1 % var 4-3-strategin med 9ÖP. De övriga strategierna i tabellen som var signifikannta med denna signifikansnivå var strategierna 3-2, 4-1 och 5-2. Dessa strategier var signifikanta då de gav de näst eller tredje största avkastningarna de gångerna som 5-1-strategin gav den största. De strategierna utöver 5-1-strategin som vid någon längd på överhoppningsperioden var störst och signifikant med en signifikansnivå på 5 % är strategierna 3-2, 4-1, 4-2 och 4-3. Strategierna 2-1, 3-1, 4-1, 4-3 och 5-3 är näst eller tredje störst någon gång i tabellen och signifikanta med en signifikansnivå på 5 %. Inga av de övriga strategierna i tabellen var signifikanta.

5.4 Tre portföljer, sorteringsperiod på 11 månader (3p11s)

Tabell 10 visar resultaten för undersökningen med tre portföljer, en sorteringsperiod på 11 månader, en överhoppningsperiod på 1 månad och en innehavsperiod på 1 månad.
Tabellen är utformad på samma sätt som tabell 1 och en signifikant avkastning från momentumportföljen tyder på att mervärde kan fås genom tillämpning av en momentumstrategi. En överhoppningsperiod på 1 månad ger den största och mest signifikanta avkastningen för momentumstrategin, såsom framgår ur figur 7.

Tabell 10

<table>
<thead>
<tr>
<th>Statistik</th>
<th>Portfölj 1</th>
<th>Portfölj 2</th>
<th>Portfölj 3</th>
<th>Mom. (3-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medeltal i %</td>
<td>0,533</td>
<td>1,250</td>
<td>1,571</td>
<td>1,038</td>
</tr>
<tr>
<td>St.av.</td>
<td>6,579</td>
<td>4,839</td>
<td>5,514</td>
<td>4,062</td>
</tr>
<tr>
<td>Varians</td>
<td>43,284</td>
<td>23,418</td>
<td>30,403</td>
<td>16,499</td>
</tr>
<tr>
<td>Z-statistika</td>
<td>1,051</td>
<td>3,348</td>
<td>3,693</td>
<td>3,311</td>
</tr>
<tr>
<td>P-värde</td>
<td>0,147</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>Sharpe-kvot</td>
<td>0,055</td>
<td>0,223</td>
<td>0,254</td>
<td>0,214</td>
</tr>
</tbody>
</table>

Skillnaden mellan medelavkastningen för förlorarportföljen (0,533 %) och vinnarportföljen (1,571 %) är mindre med tre portföljer än med fem portföljer. Momentumportföljens medelavkastning är följaktligen också något lägre (jfr 1,038 % med 1,244 % för motsvarande strategi med fem portföljer). Likväl är momentumportföljens medelavkastning både positiv och signifikant på alla rimliga signifikansnivåer, vilket innebär att nollhypotesen kan förkastas även vid denna strategi. Både medelavkastningen och Sharpe-kvoten ökar stegvis från portfölj 1 till portfölj 3. Sharpe-kvoten för momentumportföljen (0,214) är den näst lägsta och hamnar mellan kvoterna för portfölj 1 (0,055) och portfölj 2 (0,254). Standardavvikelsen är högst för förlorarportföljen (6,579), näst högst för vinnarportföljen (5,514) och lägst för momentumportföljen (4,062).

Resultaten för momentumportföljerna i undersökningarna med olika längd på överhoppningsperioden presenteras sammanfattat i tabell 11 nedan. Figurerna 7 och 8 åskådliggör grafiskt undersökningens resultat för medeltal och Sharpe-kvoter.
Det största resultatet i tabell 11 och figur 7 är det med 1ÖP (1,038 %), följt av resultatet med 2ÖP (0,946 %), vilka ligger relativt nära varandra. Både resultatet med oÖP och resultatet med 3ÖP är större än 0,6 %. Med 4ÖP–5ÖP är resultaten kring 0,35 % och med 6ÖP–18ÖP är de mindre än 0,2 % och större än -0,2 %. Med 7ÖP–10ÖP, 12ÖP och 15ÖP–16ÖP är resultaten smått negativa. Det minsta resultatet fås med 10ÖP och är -0,189 %. Standardavvikelsen ändras inte nämnvärt, men tycks vara något lägre med de längre överhoppningsperioderna. Medelvärdet på standardavvikelserna ligger på ca 3,9.
De fyra största resultaten (med 0ÖP–3ÖP) är de enda som är signifikanta med en signifikansnivå på 5%. Endast med 1ÖP och 2ÖP är resultaten signifikanta på en 1 procents signifikansnivå. Det största resultatet, det med 1ÖP, är också det mest signifikanta. Inga av de negativa resultaten signifikanta.

Figur 8  Sharpe-kvoten med olika överhoppningsperioder (3p11s)
Figur 8 skiljer sig från figur 7 i det att de negativa resultaten här är mera tydligt negativa i jämförelse med de fyra första resultaten. Dessutom har en del resultat som hade positiva medelavkastningar negativa Sharpe-kvoter. Strategin som avkastade bäst, den med 1ÖP, är även den mest lönsamma utgående från den Sharpe-kvot som presenteras i tabellen. Också i övrigt är storleksförhållandena de samma som för medelavkastningarna.

Tabell 12 visar att den enda strategin som varit bäst avkastande och signifikant med en signifikansnivå på 1 % var 3-1 stratigen med 1ÖP–2ÖP. Strategin 3-1 var även den enda bäst avkastande strategin som var signifikant med en signifikansnivå på 5 %, vilket den var med oÖP–3ÖP.

| Tabell 12 Storleksordning på avkastningar för olika portföljkombinationer (3p11s) |
|-----------------|-----------------|-----------------|
| 0 ÖP | Störst | Näst störst | Tredje störst |
| 0 3-1* | 2-1 | 3-2 |
| 1 3-1** | 2-1** | 3-2 |
| 2 3-1** | 2-1** | 3-2 |
| 3 3-1* | 2-1* | 3-2 |
| 4 3-1 | 2-1 | 3-2 |
| 5 3-1 | 2-1 | 3-2 |
| 6 3-1 | 2-1 | 3-2 |
| 7 2-1 | 3-1 | 2-3 |
| 8 1-2 | 3-2 | 1-3 |
| 9 2-3 | 2-1 | 1-3 |
| 10 1-3 | 1-2 | 2-3 |
| 11 2-1 | 3-1 | 2-3 |
| 12 1-2 | 3-2 | 1-3 |
| 13 3-1 | 2-1 | 3-2 |
| 14 3-1 | 2-1 | 3-2 |
| 15 2-3 | 2-1 | 1-3 |
| 16 2-1 | 2-3 | 1-3 |
| 17 2-1 | 2-3 | 3-1 |
| 18 3-1 | 3-2 | 2-1 |

Den enda strategin som var signifikant och näst störst var 2-1-strategin, som med 1ÖP–2ÖP var signifikant med en signifikansnivå på 1 % och med 3ÖP även var signifikant med en signifikansnivå på 5 %. Inga av de övriga strategierna i tabellen var signifikanta.
5.5 Tre portföljer, sorteringsperiod på 5 månader (3p5s)

I tabell 13 syns resultaten för undersökningen med tre portföljer, en sorteringsperiod på 5 månader, en överhoppningsperiod på 1 månad och en innehavsperiod på 1 månad. Tabellen är utformad på samma sätt som tabell 1 och en signifikant avkastning från momentumportföljen tyder på att mervärde kan fås genom tillämpning av en momentumstrategi. En överhoppningsperiod på 1 månad ger den största och mest signifikanta avkastningen för momentumstrategin, såsom framgår ur figur 9.

Tabell 13 Resultat med 1 månads överhoppningsperiod (3p5s)

<table>
<thead>
<tr>
<th>Statisik</th>
<th>Portfölj 1</th>
<th>Portfölj 2</th>
<th>Portfölj 3</th>
<th>Mom. (3-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medelavk. i %</td>
<td>0,507</td>
<td>0,996</td>
<td>1,612</td>
<td>1,105</td>
</tr>
<tr>
<td>St. av.</td>
<td>6,176</td>
<td>5,143</td>
<td>5,517</td>
<td>3,928</td>
</tr>
<tr>
<td>Varians</td>
<td>38,138</td>
<td>26,450</td>
<td>30,435</td>
<td>15,426</td>
</tr>
<tr>
<td>Z-statistika</td>
<td>1,082</td>
<td>2,554</td>
<td>3,854</td>
<td>3,712</td>
</tr>
<tr>
<td>P-värde</td>
<td>0,140</td>
<td>0,005</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>Sharpe-kvot</td>
<td>0,055</td>
<td>0,161</td>
<td>0,262</td>
<td>0,238</td>
</tr>
</tbody>
</table>

Momentumportföljens medelavkastning är här 1,105 %, dvs. lägre än för den bäst avkastande momentumstrategin med fem portföljer och en sorteringsperiod på 5 månader (1,32 %), men högre än den bäst avkastande momentumstrategin med tre portföljer och en sorteringsperiod på 11 månader (1,038 %). Momentumportföljens medelavkastning är fortsättningsvis signifikant på alla rimliga signifikansnivåer och nollhypotesen kan därmed förkastas. Både medelavkastningen och Sharpe-kvoten ökar stegvis från portfölj 1 till portfölj 3. Sharpe-kvoten för momentumportföljen (0,238) hamnar mellan de för portfölj 2 (0,161) och portfölj 3 (0,262). Standardavvikelsen är högst för förlorarportföljen (6,176), näst högst för vinnarportföljen (5,517) och lägst för momentumportföljen (3,928).

Resultaten för momentumportföljerna i undersökningarna med olika längd på överhoppningsperioden presenteras sammanfattat i tabell 14 nedan. Figurerna 9 och 10 åskådliggör grafiskt undersökningens resultat för medeltal och Sharpe-kvoter.
Den största medelavkastningen i tabell 14 och figur 9 är den med 1 ÖP (1,105 %), men alla resultat med 0–3 ÖP har relativt höga avkastningar (>0,85 %). Alla resultat mellan 0 ÖP och 7 ÖP har medelavkastningar större än 0,5 % och resultaten för 8 ÖP–9 ÖP är inte mycket under (0,465 % och 0,486 %). Resten av resultaten är antingen smått positiva (10 ÖP, 17 ÖP och 18 ÖP) eller negativa (11 ÖP–16 ÖP). Den mest negativa avkastningen uppnåddes med 14 ÖP och ligger på -0,468 %. Standardavvikelsen verkar inte variera nämnvärt för de olika längderna på överhoppningsperioden utan ligger generellt nära ett medelvärde på ca 3,5.
De tio bästa resultaten (med 0ÖP–9ÖP) är alla signifikanta med en signifikansnivå på 5 %, vilket inte gäller något av de senare resultaten i tabellen. Med en signifikansnivå på 1 % är antalet signifikanta resultat något färre. De signifikanta resultaten är då de med 0ÖP–5ÖP och resultatet med 7ÖP. Resultatet med 1ÖP är det största och också det mest signifikanta. Inga av de negativa resultaten signifikanta på en 5 procents signifikansnivå, men resultatet med 14ÖP är det nästan, med ett p-värde på 0,051.

Återigen är de negativa resultaten mera tydligt negativa vad gäller Sharpe-kvoter än medelavkastning (jämför figur 9 och figur 10). De två sista resultaten i tabellen hade även negativa Sharpe-kvoter trots positiva medelavkastningar. Den bäst avkastande strategin, med 1ÖP, är den mest lönsamma utgående från Sharpe-kvoterna. Också i övrigt är storleksförhållandena de samma som för medelavkastningarna.
Ur tabell 15 framgår att 3-1-strategin under undersökningen var den strategi som avkastade bäst och att den var signifikant med en signifikansnivå på 1 % med oÖP–4ÖP samt med 7ÖP. Även med 6ÖP, 8ÖP och 9ÖP var 3-1-strategin den bäst avkastande strategin och den var då signifikant med en signifikansnivå på 5 %. Med 5ÖP var 3-1-strategin signifikant med en signifikansnivå på 1 %, men den hade då endast den näst största avkastningen.
Endast med 5ÖP var någon annan strategi än momentumstrategin störst och signifikant. Detta var strategin 2-1 och den var signifikant med en signifikansnivå på 1 %. Strategin 2-1 var även näst störst och signifikant fyra gånger, varav en gång med en signifikansnivå på 1 % (med 2ÖP). Strategin 3-2 var näst störst och signifikant två gånger, båda gångerna med en signifikansnivå på 1 %. Strategierna 2-1 och 3-2 var även tredje störst och signifikanta med en signifikansnivå på 5 % två gånger var. Inga av de övriga strategierna i tabellen var signifikanta.

5.6 Tre portföljer, sorteringsperiod på 1 månad (3p1s)

Resultaten för undersökningen med tre portföljer, en sorteringsperiod på 1 månad, en överhoppningsperiod på 2 månader och en innehavsperiod på 1 månad presenteras i tabell 16. Tabellen är utformad på samma sätt som tabell 1 och en signifikant avkastning från momentumportföljen tyder på att mervärde kan fås genom tillämpning av en
momentumstrategi. En överhoppningsperiod på 2 månader ger den största och mest signifikanta avkastningen för momentumstrategin, såsom framgår ur figur 11.

Tabell 16  Resultat med 2 månaders överhoppningsperiod (3p1s)

<table>
<thead>
<tr>
<th>Statistik</th>
<th>Portfölj 1</th>
<th>Portfölj 2</th>
<th>Portfölj 3</th>
<th>Mom. (3-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medeltal</td>
<td>0,458</td>
<td>0,968</td>
<td>1,494</td>
<td>1,036</td>
</tr>
<tr>
<td>St. av.</td>
<td>6,067</td>
<td>5,008</td>
<td>5,490</td>
<td>3,247</td>
</tr>
<tr>
<td>Varians</td>
<td>36,810</td>
<td>25,079</td>
<td>30,143</td>
<td>10,546</td>
</tr>
<tr>
<td>Z-statistika</td>
<td>1,004</td>
<td>2,571</td>
<td>3,620</td>
<td>4,244</td>
</tr>
<tr>
<td>P-värde</td>
<td>0,140</td>
<td>0,005</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>Sharpe-kvot</td>
<td>0,048</td>
<td>0,160</td>
<td>0,241</td>
<td>0,267</td>
</tr>
</tbody>
</table>

Momentumportföljens medelavkastning är nu 1,036 %, dvs. lägre än de resultat som presenterats för övriga strategier, om än endast lite mindre än resultatet för den bäst avkastande 3p11s-strategin (1,038 %). Däremot är medelavkastningen för momentumportföljen den mest signifikanta med en z-statistika på 4,244. Således är även denna strategi signifikant på alla rimliga signifikansnivåer och nollhypotesen kan än en gång förkastas. Både medelavkastningen och Sharpe-kvoten ökar stegvis från portfölj 1 till portfölj 3 och momentumportföljen har den högsta Sharpe-kvoten. Standardavvikelsen är högst för förlorarportföljen (6,067), näst högst för vinnarportföljen (5,490) och lägst för momentumportföljen (3,247).

Resultaten för momentumportföljerna i undersökningarna med olika längd på överhoppningsperioden presenteras sammanfattat i tabell 14 nedan. Figurerna 9 och 10 åskådliggör grafiskt undersökningens resultat för medeltal och Sharpe-kvoter.
Den största medelavkastningen i tabell 17 och figur 11 är den med 2ÖP (1,036 %), därefter kommer avkastningarna med 3ÖP (0,845 %) och 7ÖP (0,773 %). Övriga resultat ligger alla mellan +/-0,4 %. Det största absoluta värdet av dessa resultat erhölls med 10ÖP (0,394 %). Avkastningarna med 0ÖP, 12ÖP och 16ÖP–18ÖP är negativa. Det minsta av de negativa resultaten uppnåddes med 18ÖP (-0,352 %). Standardavvikelsen varierar mer än för de tidigare strategierna, men fortsättningsvis inte mycket. Det lägsta värdet är 2,508 med 11ÖP och det största är 3,448 med 15ÖP. De övriga värdena varierar kring ett medelvärde på ca 3,0.

<table>
<thead>
<tr>
<th>Längd på ÖP (mån)</th>
<th>Medeltal (%)</th>
<th>St.av.</th>
<th>Z-statistika</th>
<th>P-värde</th>
<th>Sharpe-kvot</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0,318</td>
<td>3,339</td>
<td>-1,275</td>
<td>0,101</td>
<td>-0,146</td>
</tr>
<tr>
<td>1</td>
<td>0,338</td>
<td>3,152</td>
<td>1,430</td>
<td>0,076</td>
<td>0,054</td>
</tr>
<tr>
<td>2</td>
<td>1,036</td>
<td>3,247</td>
<td>4,244</td>
<td>0,000**</td>
<td>0,267</td>
</tr>
<tr>
<td>3</td>
<td>0,845</td>
<td>3,122</td>
<td>3,591</td>
<td>0,000**</td>
<td>0,217</td>
</tr>
<tr>
<td>4</td>
<td>0,076</td>
<td>2,946</td>
<td>0,342</td>
<td>0,366</td>
<td>-0,031</td>
</tr>
<tr>
<td>5</td>
<td>0,194</td>
<td>3,190</td>
<td>0,803</td>
<td>0,211</td>
<td>0,008</td>
</tr>
<tr>
<td>6</td>
<td>0,075</td>
<td>2,854</td>
<td>0,344</td>
<td>0,365</td>
<td>-0,033</td>
</tr>
<tr>
<td>7</td>
<td>0,773</td>
<td>2,789</td>
<td>3,635</td>
<td>0,000**</td>
<td>0,217</td>
</tr>
<tr>
<td>8</td>
<td>0,176</td>
<td>2,657</td>
<td>0,868</td>
<td>0,193</td>
<td>0,003</td>
</tr>
<tr>
<td>9</td>
<td>0,239</td>
<td>3,126</td>
<td>0,997</td>
<td>0,159</td>
<td>0,023</td>
</tr>
<tr>
<td>10</td>
<td>0,394</td>
<td>2,998</td>
<td>1,710</td>
<td>0,044*</td>
<td>0,075</td>
</tr>
<tr>
<td>11</td>
<td>0,013</td>
<td>2,508</td>
<td>0,067</td>
<td>0,473</td>
<td>-0,062</td>
</tr>
<tr>
<td>12</td>
<td>-0,061</td>
<td>2,662</td>
<td>-0,296</td>
<td>0,384</td>
<td>-0,086</td>
</tr>
<tr>
<td>13</td>
<td>0,168</td>
<td>2,946</td>
<td>0,734</td>
<td>0,232</td>
<td>0,000</td>
</tr>
<tr>
<td>14</td>
<td>0,054</td>
<td>3,081</td>
<td>0,225</td>
<td>0,411</td>
<td>-0,037</td>
</tr>
<tr>
<td>15</td>
<td>0,157</td>
<td>3,448</td>
<td>0,582</td>
<td>0,280</td>
<td>-0,004</td>
</tr>
<tr>
<td>16</td>
<td>-0,227</td>
<td>3,268</td>
<td>-0,887</td>
<td>0,188</td>
<td>-0,121</td>
</tr>
<tr>
<td>17</td>
<td>-0,155</td>
<td>3,176</td>
<td>-0,622</td>
<td>0,267</td>
<td>-0,102</td>
</tr>
<tr>
<td>18</td>
<td>-0,352</td>
<td>2,991</td>
<td>-1,491</td>
<td>0,068</td>
<td>-0,174</td>
</tr>
</tbody>
</table>
De tre bäst avkastande resultaten (med 2ÖP–3ÖP och 7ÖP) är de enda resultaten signifika
kanta med en signifikansnivå på 1 %. Utökas signifikansnivån till 5 % tillkommer
enbart resultatet med 10ÖP som signifikant. Det största resultatet, med 2ÖP, är också
det mest signifikanta. Inga av de negativa resultaten är signifika på en 5 procents
signifikansnivå.

Vad gäller Sharpe-kvoten är skillnaden mellan de tre största värdena och övriga värden
ännu tydligare än vid medelavkastningen. Resultaten med 2ÖP–3ÖP och 7ÖP ligger alla
tre över 0,21, medan den fjärde största Sharpe-kvoten, den med 10ÖP, ligger kring 0,08.
Flera av de lägre värdena går från att vara smått positiva till att vara smått negativa eller
nästan 0. Sharpe-kvoterna för resultaten med de antal överhoppningsperioder som gav
negativa medelavkastningar är också mer tydligt negativa än tidigare. Den bäst
avkastande strategin, med 2ÖP, är den mest lönsamma utgående från Sharpe-kvoterna.
Också i övrigt är storleksförhållandena de samma som för medelavkastningarna med
undantag av Sharpe-kvoterna med 3ÖP och 7ÖP som är ungefär lika stora (den femte
decimalen är större för 7ÖP).
I tabell 18 framgår det att 3-1 strategin under undersökningen var den strategi som avkastade bäst och att den var signifikant med en signifikansnivå på 1 % med 2ÖP–3ÖP samt med 7ÖP. Även med 10ÖP var 3-1-strategin den bäst avkastande strategin och den var då signifikant med en signifikansnivå på 5 %. Dessa gånger är emellertid de enda då 3-1-strategin förekommer som signifikant strategi i tabellen.
Tabell 18    Storleksordning på avkastningar för olika portföljkombinationer (3p1s)

<table>
<thead>
<tr>
<th>ÖP</th>
<th>Störst</th>
<th>Näst störst</th>
<th>Tredje störst</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1-3</td>
<td>2-3</td>
<td>1-2</td>
</tr>
<tr>
<td>1</td>
<td>2-1**</td>
<td>3-1</td>
<td>2-3</td>
</tr>
<tr>
<td>2</td>
<td>3-1**</td>
<td>3-2**</td>
<td>2-1*</td>
</tr>
<tr>
<td>3</td>
<td>3-1**</td>
<td>2-1**</td>
<td>3-2*</td>
</tr>
<tr>
<td>4</td>
<td>3-2</td>
<td>3-1</td>
<td>1-2</td>
</tr>
<tr>
<td>5</td>
<td>3-1</td>
<td>2-1</td>
<td>3-2</td>
</tr>
<tr>
<td>6</td>
<td>2-1</td>
<td>3-1</td>
<td>2-3</td>
</tr>
<tr>
<td>7</td>
<td>3-1**</td>
<td>2-1**</td>
<td>3-2*</td>
</tr>
<tr>
<td>8</td>
<td>2-1</td>
<td>3-1</td>
<td>2-3</td>
</tr>
<tr>
<td>9</td>
<td>3-2</td>
<td>3-1</td>
<td>1-2</td>
</tr>
<tr>
<td>10</td>
<td>3-1*</td>
<td>2-1</td>
<td>3-2</td>
</tr>
<tr>
<td>11</td>
<td>2-1*</td>
<td>3-2*</td>
<td>3-1</td>
</tr>
<tr>
<td>12</td>
<td>1-3</td>
<td>1-2</td>
<td>2-3</td>
</tr>
<tr>
<td>13</td>
<td>3-2</td>
<td>3-1</td>
<td>1-2</td>
</tr>
<tr>
<td>14</td>
<td>3-2</td>
<td>1-2</td>
<td>3-1</td>
</tr>
<tr>
<td>15</td>
<td>3-2</td>
<td>3-1</td>
<td>1-2</td>
</tr>
<tr>
<td>16</td>
<td>1-3</td>
<td>2-3</td>
<td>1-2</td>
</tr>
<tr>
<td>17</td>
<td>1-2</td>
<td>1-3</td>
<td>3-2</td>
</tr>
<tr>
<td>18</td>
<td>1-3</td>
<td>2-3</td>
<td>1-2</td>
</tr>
</tbody>
</table>

Strategin 2-1 var störst och signifikant både med 1ÖP (signifikansnivå 1 %) och med 11ÖP (signifikansnivå 5 %). Samma strategi var även näst störst och signifikant med en signifikansnivå på 1 % med 3ÖP och 7ÖP, då 3-1-strategin var den bäst avkastande, samt tredje störst och signifikant med en signifikansnivå på 5 % med 2ÖP. Strategin 3-2 var signifikant med en signifikansnivå på 1 % på ett ställe i tabellen, med 2ÖP, då den avkastade näst bäst efter 3-1-strategin. Denna strategi var även signifikant med en signifikansnivå på 5 % med 3ÖP och 7ÖP, då den var den tredje bästa strategin, och med 11ÖP då den var den näst bästa strategin. Inga av de övriga strategierna i tabellen var signifikanta.
6 DISKUSSION OCH SAMMANFATTNING

6.1 De bäst avkastande momentumstrategierna

De resultat som presenterades i föregående kapitel tyder på att det inte går att förkasta antagandet om att en signifikant momentumeffekt har en inverkan på hur aktier presterar på Helsingforsbörsen. Detta gäller för samtliga av de testade kombinationerna av antal portföljer och antal månader i sorteringsperioden. I tabellerna 19–24 jämförs resultateten som presenterades i kapitel 5 för de sorterade portföljerna och momentumportföljen för den längd på överhoppningsperioden, 1ÖP eller 2ÖP, som momentumportföljen avkastade bäst. SP i tabellerna avser antalet månader i sorteringsperioden.

Tabell 19 Jämförelse mellan medelavkastningarna för momentumstrategierna (5p)

<table>
<thead>
<tr>
<th>SP</th>
<th>Portfölj 1</th>
<th>Portfölj 2</th>
<th>Portfölj 3</th>
<th>Portfölj 4</th>
<th>Portfölj 5</th>
<th>Mom. (5-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>0,385</td>
<td>0,794</td>
<td>1,242</td>
<td>1,515</td>
<td>1,629</td>
<td>1,244</td>
</tr>
<tr>
<td>5</td>
<td>0,254</td>
<td>0,849</td>
<td>1,211</td>
<td>1,393</td>
<td>1,574</td>
<td>1,320</td>
</tr>
<tr>
<td>1</td>
<td>0,227</td>
<td>0,823</td>
<td>1,132</td>
<td>1,126</td>
<td>1,526</td>
<td>1,300</td>
</tr>
</tbody>
</table>

Tabell 20 Jämförelse mellan medelavkastningarna för momentumstrategierna (3p)

<table>
<thead>
<tr>
<th>SP</th>
<th>Portfölj 1</th>
<th>Portfölj 2</th>
<th>Portfölj 3</th>
<th>Mom. (3-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>0,533</td>
<td>1,25</td>
<td>1,571</td>
<td>1,038</td>
</tr>
<tr>
<td>5</td>
<td>0,507</td>
<td>0,996</td>
<td>1,612</td>
<td>1,105</td>
</tr>
<tr>
<td>1</td>
<td>0,458</td>
<td>0,968</td>
<td>1,494</td>
<td>1,036</td>
</tr>
</tbody>
</table>

Tabell 19 och tabell 20 jämför medelavkastningarna i procent för de olika portföljerna. Överlag kan sägas att storleken på momentumavkastningen, 1–1,3 %, är i linje med de resultat som brukar presenteras för andra marknader (t.ex. Rouwenhorst 1998 och Jegadeesh & Titman 2001). Resultaten med 5 portföljer är större, vilket följer naturligt av att uppdelningen mellan vinnare och förlorare blir tydligare med fler portföljer. Motvikten till detta är dock, som tidigare nämnts, att det med det knappa finländska materialet är svårt att säga om marknadsrisken kan anses eliminerad. Ju fler portföljer som används desto färre blir antalet aktier i varje portfölj och desto större blir den potentiella marknadsrisken. Vad gäller längden på sorteringsperioden så är det 5 månader som tycks ge bäst resultat, men variationen är inte så stor. Sätt till de sorterade
portföljerna är det endast ett tillfälle i tabellerna där den stegvisa ökningen i avkastning som vi förväntar oss av momentumsorteringen inte gäller. Då fem portföljer sorteras utgående ifrån en sorteringsperiod på en månad avkastar portfölj 3 ca 1,132 % och portfölj 4 ca 1,126 %. Denna skillnad är emellertid inte märkbar med mindre än tre gällande decimaler, så överlag kan likväl sägas att portföljernas medelavkastningar visar på en lyckad momentumsortering.

Tabell 21  Jämförelse mellan standardavvikelserna för momentumstrategierna (5p)

<table>
<thead>
<tr>
<th>SP</th>
<th>Portfölj 1</th>
<th>Portfölj 2</th>
<th>Portfölj 3</th>
<th>Portfölj 4</th>
<th>Portfölj 5</th>
<th>Mom. (5-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>7,283</td>
<td>5,609</td>
<td>5,048</td>
<td>5,014</td>
<td>6,022</td>
<td>5,128</td>
</tr>
<tr>
<td>5</td>
<td>6,718</td>
<td>5,415</td>
<td>5,465</td>
<td>5,282</td>
<td>5,951</td>
<td>4,792</td>
</tr>
<tr>
<td>1</td>
<td>6,623</td>
<td>5,706</td>
<td>5,048</td>
<td>5,089</td>
<td>5,948</td>
<td>4,445</td>
</tr>
</tbody>
</table>

Tabell 22  Jämförelse mellan standardavvikelserna för momentumstrategierna (3p)

<table>
<thead>
<tr>
<th>SP</th>
<th>Portfölj 1</th>
<th>Portfölj 2</th>
<th>Portfölj 3</th>
<th>Mom. (3-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>6,579</td>
<td>4,839</td>
<td>5,514</td>
<td>4,062</td>
</tr>
<tr>
<td>5</td>
<td>6,176</td>
<td>5,143</td>
<td>5,517</td>
<td>3,928</td>
</tr>
<tr>
<td>1</td>
<td>6,067</td>
<td>5,008</td>
<td>5,490</td>
<td>3,247</td>
</tr>
</tbody>
</table>

Lönsamhet i form av Sharpe-kvoter jämförs i tabell 23 och tabell 24 ovan. Portfölj 1 hade lägst avkastning och högst standardavvikelse för samtliga av de presenterade strategierna och följaktligen är Sharpe-kvoten den klart lägsta, vilket förväntas av en momentumsortering. Sharpe-kvoterna för portfölj 2 i tabell 23 är också relativt små, men i övrigt är resultaten rätt lika. För momentumstrategierna med fem portföljer och en sorteringsperiod på 5 månader och 1 månad, samt för strategin med tre portföljer och en sorteringsperiod på 1 månad är Sharpe-kvoten hos momentumportföljen den högsta. Trots att en sorteringsperiod på fem månader gav den högsta avkastningen för momentumportföljen är Sharpe-kvoten som högst med en sorteringsperiod på 1 månad. Detta eftersom standardavvikelsen då är som lägst. Lönsamheten för momentumstrategin skulle alltså vara störst då sorteringsperioden är en månad lång. Skillnaderna mellan resultaten för de olika momentumstrategierna är emellertid små och det är svårt att dra långtgående slutsatser från detta ena resultat. Skillnaderna mellan momentumportföljens resultat då strategierna med fem portföljer jämförs med strategierna med tre portföljer är ännu mindre (0,004, 0,002 och 0,013) och lönsamheten enligt Sharpe-kvoten kan sägas vara ungefär den samma.

6.2 Resultat med varierande längd på överhoppningsperioden

Tabellerna 2, 5, 8, 11, 14 och 17 i kapitel 5 redogör för momentumstrategins resultat då längden på överhoppningsperioden varierar mellan 0 och 18 månader.

Enligt teorin som presenterats i tidigare kapitel förväntas momentumeffekten påverka resultatet så att det är positivt för de kortare överhoppningsperioderna, för att sedan bli mindre allt eftersom längden på överhoppningsperioden ökar. Om en kortsiktig contrarianeffekt påverkar resultatet borde värdena med 0ÖP vara lägre än de med 1ÖP och ifall en långsiktig contrarianeffekt påverkar resultatet borde det bli negativt för de längre överhoppningsperioderna. Som konstaterats är den största momentumavkastningen för strategierna signifikant och positiv och har en överhoppningsperiod som är en eller två månader lång.

Med en sorteringsperiod på 11 månader är strategierna med 0ÖP–3ÖP tydligt positiva och signifikanta med en signifikansnivå på 5 %. Då sorteringsperioden är 5 månader gäller motsvarande för 0ÖP–9ÖP med tre portföljer. Med fem portföljer är resultatet det samma bortsätt från att resultaten för 6ÖP och 9ÖP inte är signifikanta. Är sorteringsperioden endast 1 månad lång blir resultaten med 2ÖP–3ÖP och 7ÖP signifikanta med en signifikansnivå på 1 %, utökas signifikansnivån till 5 % tillkommer resultaten med 1ÖP och 11ÖP för fem portföljer och resultatet med 10ÖP med tre portföljer.

Det tycks alltså vara så att resultaten med en sorteringsperiod på 5 månader är de som visar störst tecken på påverkan av en momentumeffekt i datamaterialet. Då sorteringsperioden är 11 månader återfinns också några signifikanta momentumavkastningar bland resultaten för de kortare överhoppningsperioderna, men skillnaden jämfört med då sorteringsperioden är 5 månader lång är tydlig. Även med en sorteringsperiod på 11 månader finns det dock tydliga tecken på att en
momentumavkastning påverkat datamaterialet, även om detta inte är lika tydligt som då sorteringsperioden endast är 5 månader lång. Då sorteringsperioden är som kortast, endast 1 månad lång, är momentumeffekten i resultatet den minst tydliga. Två resultat som är signifikanta på en 1 procents signifikansnivå skjuter upp i början av graferna, medan de flesta andra värden är betydligt lägre. Undantaget är resultaten med 7ÖP som, trots att de är omgivna av mycket låga värden, är signifikanta med en signifikansnivå på 1 %. Trots att även resultaten med en sorteringsperiod på 1 månad visar klara tecken på att datamaterialet påverkats av en momentumeffekt är tecknen alltså inte lika tydliga som då sorteringsperioden är längre.

Vad gäller den kortsiktiga contrarianeffekten så ger graferna tydligt stöd för att användandet av en överhoppningsperiod leder till bättre resultat och därmed att resultaten utan överhoppningsperiod är lägre än de borde vara utan en kortsiktig contrarianeffekt i materialet. Enligt teorin borde en kortsiktig contrarianeffekt innebära att resultatet av en momentumsortering på basis av enbart den månad som föregår den månad som som föregår det resultat som sorterar ge en momentumstrategi som avkastar negativt. Detta upplägg motsvarar de uträkningar då sorteringsperioden är 1 månad med 0ÖP. I graferna syns mycket riktigt att resultaten då är negativa (om än inte signifikanta). Detta står i kontrast mot de resultat som fås då en överhoppningsperiod på 2–3 månader används, vilka är starkt signifikanta och positiva. Således hittas alltså stöd för användningen av överhoppningsperioder i momentumstrategier. I graferna med 11 och 5 månader långa sorteringsperioder syns den kortsiktiga contrarianeffekten genom att staplarna vid 0ÖP är lägre än de 2–3 följande staplarna. Även om resultatet vid 0ÖP här är signifikant och positivt så verkar det som om månaden före innehavsperioden drar ner på effekten av momentumsorteringen.

Antagandet att datamaterialet påverkas av en långsiktig contrarianeffekt stöds till viss del av graferna. Med en långsiktig contrarianeffekt borde resultaten i graferna bli lägre då längden på överhoppningsperioden ökar, åtminstone till en viss punkt. Detta syns inte särskilt tydligt i medeltalsgraferna då sorteringsperioden är 11 månader lång, men i Sharpe-kvotsgraferna, i synnerhet de med 3 portföljer, har resultatet en form som liknar vad som förväntas med en contrarianeffekt i datamaterialet. En gradvis sänkning av resultaten fram till 10ÖP och sedan en höjning. Återigen är det graferna med en sorteringsperiod på 5 månader som mest liknar vad vi väntar oss utifrån teorin och detta gäller både medeltalsgraferna och Sharpe-kvotsgraferna (det är dock mera tydligt i de senare). Efter 10ÖP påbörjas en sänkning av resultaten och vid 14ÖP–15ÖP är resultatet
som lägst, vilket följs av en höjning. Dessa negativa kurvor i graferna är emellertid inte lika tydliga som de motsvarande positiva och de negativa resultaten är inte lika stora till sitt absoluta värde som de positiva. Åtminstone de tre sista värdena i graferna med en sorteringsperiod på 1 månad ser ut som om de kunde påbörja en negativ kurva, men liksom med de positiva värdena är det svårt att se något tydligt. De resultat som de presenterade graferna redogör för ger alltså vissa tecken på att det bakomliggande datamaterialet skulle påverkas av en contrarianeffekt, speciellt då sorteringsperioden är 5 månader lång. I slutändan bör emellertid poängteras att inget av de negativa värdena är signifikant ens med en signifikansnivå på 5 %, vilket innebär att det egentligen inte går att dra några slutsatser om huruvida en långsiktig contrarianeffekt påverkar resultaten.

6.3 Jämförelse mellan momentumstrategierna och andra portföljkombinationer

Det mest väsentliga att observera i jämförelserna mellan olika momentumstrategier är huruvida strategierna 5-1 för fem portföljer och 3-1 för tre portföljer är de av de signifikanta strategierna som avkastar bäst. Ifall andra signifikanta strategier avkastar bättre innebär det att skillnaden mellan de två portföljerna som den strategin är uppbyggd med är större än skillnaderna mellan portfölj 1 och portfölj 5, dvs. de två portföljer som momentumstrategin antar att skall avkasta sämst respektive bäst. Detta tyder på att momentumeffekten inte starkt påverkat avkastningarna.

För samtliga sex testade kombinationer av antal portföljer och antal sorteringsmånader var det momentumstrategierna som avkastade bäst med de antal överhoppningsperioder som gav de mest signifikanta resultaten. Vid 5p11s-strategierna avkastade momentumstrategin bäst och signifikant med en signifikansnivå på 1 % med 0ÖP–2ÖP. För 3p5s-strategierna gällde motsvarande med 1ÖP–3ÖP, för 5p1s-strategierna med 2ÖP–3ÖP och 7ÖP, för 3p11s-strategierna med 1ÖP–2ÖP, för 3p5s-strategierna med 0ÖP–4ÖP samt med 7ÖP och för 3p1s-strategierna med 2ÖP–3ÖP samt även här för 7ÖP. Dessa längder på överhoppningsperioden ger alltså de bästa resultaten när en momentumstrategi används. Som konstaterats tidigare varierade den bäst avkastande momentumstrategin mellan den med 1ÖP och 2ÖP och den ideala momentumstrategin borde alltså på basis av detta ha en av dessa längder på överhoppningsperioden beroende på övriga parametrar. Intressant är att 7ÖP gav så pass signifikanta resultat då sorteringsperioden var 5 och 1 månad lång (med 5p5s var 5-1 strategin näst störst och signifikant med en signifikansnivå på 5 %).
Att de diskuterade resultaten är de mest väsentliga stöds av tabell 25 nedan. Tabellen jämför de högsta avkastningarna från de undersökta momentumstrategierna (mom.) med de högsta avkastningarna för längder på överhoppningsperioden då momentumstrategin inte är den bäst avkastande strategin (icke-mom.).

Tabell 25 Bästa momentumportföljer och bästa icke-momentumportföljer

<table>
<thead>
<tr>
<th>Strategier</th>
<th>Högsta mom. (%)</th>
<th>ÖP (mom.)</th>
<th>Portföljer (icke-mom.)</th>
<th>Högsta icke-mom. (%)</th>
<th>ÖP (icke-mom.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5p11s</td>
<td>1,24</td>
<td>1</td>
<td>2-1*</td>
<td>0,55</td>
<td>17</td>
</tr>
<tr>
<td>5p5s</td>
<td>1,32</td>
<td>2</td>
<td>4-1**</td>
<td>1,01</td>
<td>7</td>
</tr>
<tr>
<td>5p1s</td>
<td>1,30</td>
<td>2</td>
<td>3-2*</td>
<td>0,58</td>
<td>5</td>
</tr>
<tr>
<td>3p11s</td>
<td>1,04</td>
<td>1</td>
<td>2-3</td>
<td>0,26</td>
<td>9</td>
</tr>
<tr>
<td>3p5s</td>
<td>1,11</td>
<td>1</td>
<td>2-1**</td>
<td>0,83</td>
<td>5</td>
</tr>
<tr>
<td>3p1s</td>
<td>1,04</td>
<td>2</td>
<td>2-1**</td>
<td>0,54</td>
<td>1</td>
</tr>
</tbody>
</table>

Såsom framgår ur tabell 25 var det ingen portföljkombination som avkastade bättre än momentumstrategin för någon av de undersökta kombinationerna av antal portföljer och antal sorteringsmånader. Den klart högsta avkastningen för en icke-momentumstrategi i tabellen är värden för 5p5s-strategierna, 1,01 % (att jämföra med det högsta värden för momentumstrategin, 1,32 %). I detta fall kan poängteras att strategierna 4-1 och 5-2 även borde ge relativ hög avkastning vid en momentumeffekt och att 5-1-strategin är den näst bäst avkastande med 7ÖP (0,71 %). Som framgår ur tabell 6 i kapitel 5 är den bäst presterande strategin med fem portföljer och en sorteringsperiod på 5 månader någon av strategierna 5-1, 5-2 eller 4-1 med 0ÖP–12ÖP och även när momentumstrategin inte avkastar bäst avkastar den ändå bland de tre bäst avkastande strategierna fram till 11ÖP. Den bäst avkastande strategin med längre överhoppningsperiod än 12 månader är 1-5-strategin med 15 ÖP, vilken avkastar 0,60 % och inte är signifikant. Det kan alltså sägas att resultaten för 5p5s-strategierna rätt väl stöder hypotesen att aktiepriserna påverkas av en momentumeffekt om vi tänker oss både portfölj 4 och 5 som vinnarportföljer och både portfölj 1 och portfölj 2 som förlorarportföljer.

momentumavkastningen. Allt som allt kan alltså sägas att de bäst avkastande momentumstrategierna tycks avkasta klart bättre än övriga undersökta strategier, vilket stöder idén om att momentumsorteringen gjort portfölj 1 till en förlorarportfölj och portfölj 5 till en vinnarportfölj. Åtminstone för de längder på överhoppningsperioden som ger oss de mest väsentliga resultaten.

Från portfölj jämförelserna kan ännu noteras hur andra portföljstrategier än momentumstrategierna presterat. Med fem portföljer borde strategierna 4-1 och 5-2 avkasta näst bäst om aktieavkastningarna påverkas av en momentumeffekt. De strategier som sedan borde avkasta bäst är strategierna 3-1, 4-2 och 5-3 följt av strategierna 2-1, 3-2, 4-3 och 5-4, vilka borde avkasta sämst undantaget strategier där en portfölj med lägre tal hålls och en portfölj med högre tal blankas. Med tre portföljer går det givetvis inte att göra motsvarande undersökningar eftersom antalet strategier är så litet.

För 5p11s-strategierna är det utöver momentumstrategin enbart 3-2-strategin och 4-1-strategin som återfinns bland de tre bäst avkastande strategierna för 0ÖP–3ÖP då resultaten var som störst och mest signifikanta. Detta stöder delvis styrkan hos momentumsorteringen, eftersom 4-1-strategin konsekvent förekommer högt. Strategin 3-2, borde dock inte vara en av de tre bäst avkastande strategierna med en stark momentumsortering. Bland resultaten signifikanta på en 5 procents signifikansnivå återfinns även några strategier som håller en lägre portfölj och blankar en högre. Detta talar naturligtvis emot en stark momentumsortering, men då detta gäller för längder på överhoppningsperioden utöver de väsentligaste är de mest en indikation på att momentumsorteringen inte verkar ge några synliga resultat för överhoppningsperioder längre än 8 månader.

Med fem portföljer och en sorteringsperiod på 5 månader återfinns strategierna 2-1, 3-1, 3-2, 4-1, 4-2, 5-2 och 5-3 alla bland de tre största strategierna under den mest signifikanta perioden med 0ÖP–8ÖP. Samtliga av dessa strategier var signifikanta med en signifikansnivå på 1 % åtminstone en gång under denna period. Detta inkluderar som förväntat 4-1- och 5-2-strategierna och de gånger i tabellen som någon annan strategi än momentumstrategin är störst och signifikant med en signifikansnivå på 1 % är det en av dessa två strategier. De tre gånger som momentumstrategin avkastar bäst är det även en av dessa två strategier som avkastar näst bäst. Trots att några strategier med närbelägna portföljer ibland återfinns som signifikanta bland de tre bäst avkastande strategierna stöder alltså resultatet med fem portföljer och 5 sorteringsmånader antagandet att
aktierna momentumsorterats ganska bra. I tabellen för 5p5s-strategierna ingår två resultat signifikanta med en signifikansnivå på 5 % där en portfölj med lägre tal hålls och en portfölj med högre tal blankas. Liksom för 5p11s-strategierna infaller dessa resultat dock utanför de väsentliga längderna på överhoppningsperioden och indikerar huvudsakligen att momentumeffekten inte verkar stark med en så lång överhoppningsperiod.

Momentumsorteringen tycks inte vara lika tydlig med fem portföljer och en sorteringsperiod på 1 månad, men även här är det utöver momentumstrategin i första hand 4-1-strategin som bland de tre största strategierna är signifikant med en signifikansnivå på 1 %. Övriga strategier för vilket detta gäller är strategierna 3-2, 4-3 och 5-2 och för samtliga av dessa gäller detta endast en gång. Att 3-2-strategin är den näst största strategin och signifikant med en signifikansnivå på 1 % med 2ÖP då momentumstrategin är som störst talar emot en stark momentumsortering. Samtidigt talar emellertid det faktum att 4-1-strategin är tredje störst och signifikant med en signifikansnivå på 1 % för en stark momentumsortering. Momentumsorteringen är inte som tydligast med 5p1s-strategierna, men portföljerna tycks ändå vara någorlunda momentumsorterade åtminstone med vissa längder på överhoppningsperioden.

Sammanfattningsvis kan alltså fastslås att momentumstrategierna konsekvent gav de högsta avkastningarna av de testade portföljkombinationerna, vilket stöder teorin om att en momentumeffekt har haft inverkan på aktieresultaten. Övriga portföljer verkar också ha blivit hyfsat momentumsorterade, vilket ytterligare återigen stöder detta.

6.4 Kritisk granskning


I de undersökningar som gjorts i avhandlingen varierar överhoppningsperiodens längd mellan 0 och 18 månader. Eftersom de sista aktieresultaten som tas med i beräkningarna alltif är de som fås då innehavsperioden är december 2016 innebär detta att resultaten för de momentumsorterade portföljerna blir färre då längden på överhoppningsperioden ökar. Det går därmed att argumentera för att resultaten med olika längder på överhoppningsperioden inte är fullt jämförbara med varandra. Dock lär det inte göra någon större skillnad i praktiken eftersom den undersökta perioden är så pass lång även med 18ÖP. Angående undersökningarna i avhandlingen kan också nämnas att jämförelserna mellan momentumstrategierna som gjorts i tabellerna 3, 6, 9, 12, 15 och 18 enbart studerar avkastningar och inte lönsamhet. Det är rimligt att anta att motsvarande tabeller gjorda med basis på strategiernas Sharpe-kvoter skulle ge liknande resultat, men det är vårt att notera att en sådan undersökning inte gjorts i denna avhandling.

Tidsperioden som denna studie omfattar kunde väl delats in i kortare delperioder. En undersökning som studerar momentumeffekten på den finländska aktiemarknaden före under och efter finanskrisen kunde vara intressant.

6.5 Sammanfattning

Det kan konstateras att denna undersökning finner belägg för teorin att en momentumeffekt har inverkan på den finländska aktiemarknaden. De sex testade kombinationerna av antal portföljer och antal månader i sorteringsperioden för olika momentumstrategier gav alla upphov till en momentumvinst på minst 1 % för någon av de längder på överhoppningsperioden som undersöktes. Dessutom var samtliga av dessa winster signifikanta på alla rimliga signifikansnivåer. Momentumeffekten verkar avta med tiden, men det tycks ske olika snabbt för olika längder på sorteringsperioden. Med den långa sorteringsperioden på 11 månader gick det relativt snabbt, medan
momentumeffekten vekade hålla i sig längre då sorteringsperioden var 5 månader lång. Då sorteringsperioden var endast 1 månad verkar momentumeffekten ha hållit i sig kortast och den syns inte lika tydligt i det resultat som presenterats för olika längder på överhoppningsperioden. Då Jegadeesh och Titman (1993) först beskrev fenomenet menade de att en momentumstrategi kunde gå med vinst under en innehavsperiod på 3–12 månader, vilket motsvarar strategierna med en sorteringsperiod på 5 månader rätt väl medan de övriga strategierna inte tycks gå med vinst efter tre månader (undantaget att strategierna med en sorteringsperiod på 1 månad plötsligt avkastar positivt och signifikant med en överhoppningsperiod på 7 månader).

På basis av denna avhandling verkar det som att den bästa av de testade momentumstrategierna att använda sig av på den finländska marknaden sortera resultaten i 3 portföljer. Detta eftersom Sharpe-kvoterna är nästan de samma som med fem portföljer och eftersom marknadsrisken är bättre bortdiversifierad med färre portföljer. De olika längderna på sorteringsperioderna verkade ge liknande resultat och sorteringsperioden med 1 månad gav de största resultaten. Dock finns det flera indikationer på att en strategi med 5 sorteringsmånader är bättre. En sådan avkastning verkar hålla i sig längre (signifikant med en signifikansnivå på 5 % i 9 månader) och tabellerna som visar de bäst avkastande portföljkombinationerna visar tydligt att momentumeffekten har störst påverkan på resultatet då sorteringsperioden är 5 månader lång. Dessutom är den största Sharpe-kvoten för en 5 månader lång sorteringsperiod bara lite mindre än Sharpe-kvoten för en som är 1 månad lång. Om tre portföljer, en sorteringsperiod på 5 månader och en innehavsperiod på endast 1 månad används är en överhoppningsperiod på 1 månad den bästa enligt avhandlingens resultat.

Sammanfattningsvis kan det konstateras att det inte går att förkasta närvaron av en momentumeffekt på den finländska aktiemarknaden på basis av denna avhandling. Resultatet av den undersökning som gjorts tyder på att en signifikant momentumeffekt kan observeras under en period på upp till ca 9 månader. Huruvida den momentumavkastning som kan erhållas på basis av detta består när man tar verkliga förhållanden, såsom transaktionskostnader och andra problem vid låg likviditet, i beaktande är däremot svårt att säga. Vad som går att uttala sig om är emellertid att momentumeffekten fortsättningsvis tycks kunna identifieras utan någon allmänt accepterad förklaring. Det är därmed fortsättningsvis motiverat med studier på området.
KÄLLFÖRTECKNING


### Bilaga 1  Sammanfattning av studier i kapitel 3.1–3.3

<table>
<thead>
<tr>
<th>Författare</th>
<th>År</th>
<th>Tillgängsslag</th>
<th>Tidsperiod</th>
<th>Marknad</th>
<th>Resultat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jegadeesh &amp; Titman</td>
<td>1993</td>
<td>Aktier</td>
<td>1965–1989</td>
<td>NYSE, AMEX</td>
<td>Sammansatt överavkastning på i medeltal 12,01 % per år.</td>
</tr>
<tr>
<td>Geczy &amp; Samanov</td>
<td>2016</td>
<td>Aktier</td>
<td>1801–2012</td>
<td>USA</td>
<td>Positiv och signifikant momentumeffekt.</td>
</tr>
<tr>
<td>Chui, Titman &amp; Wei</td>
<td>2010</td>
<td>Aktier</td>
<td>Startår varierar mellan 1981 och 1998, slutår 2003</td>
<td>41 marknader världen över (inkl. Finland)</td>
<td>Ingen signifikant momentumeffekt och negativ avkastning för Japan, Taiwan, Sydkorea och Turkiet. Signifikant positiv momentumeffekt på 25 marknader (ca 1 % per månad (0,977) i Finland).</td>
</tr>
<tr>
<td>Författare</td>
<td>År</td>
<td>Tillgängs slag</td>
<td>Tidsperiod</td>
<td>Marknad</td>
<td>Resultat</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------</td>
<td>----------------</td>
<td>------------</td>
<td>--------------------------------------------------------------------------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Leivo &amp; Pätäri</td>
<td>2009</td>
<td>Aktier</td>
<td>1993–2008</td>
<td>Finland (OMX Helsinki)</td>
<td>Starka bevis för att en investeringsstrategi baserad på momentum och värdeaktier ger mervärde åt investeraren (i genomsnitt 2,84 % per år för de bästa portföljerna).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Industrimomentum tycks starkt påverka individuellt momentum.</td>
</tr>
<tr>
<td>Menkhof, Sarno, Schmel-</td>
<td>2012</td>
<td>Valutor</td>
<td>1976–2010</td>
<td>48 länders valutor, amerikansk investerare som utgångspunkt</td>
<td>Momentumstrategier på de undersökta valutamarknaderna gav en överavkastning på i medeltal 10 % per år.</td>
</tr>
<tr>
<td>Författare</td>
<td>År</td>
<td>Tillgångsslag</td>
<td>Tidsperiod</td>
<td>Marknad</td>
<td>Resultat</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----</td>
<td>----------------------------------------</td>
<td>------------------</td>
<td>--------------------------------------------------------------------------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asness, Moskowitz &amp; Pederson</td>
<td>2013</td>
<td>Individuella aktier, aktieindex, valutor, statsobligationer och terminskontrakt på handelsvaror</td>
<td></td>
<td>Aktier: USA, Storbritannien, kontinentala Europa och Japan</td>
<td>Stark strukturell korrelation för värde- och momentumstrategier globalt för olika tillgångsslag. Problematiska resultat för både rationella och beteendevetenskapliga förklaringsmodeller.</td>
</tr>
</tbody>
</table>