Atheroma in a human coronary artery

Coronary deaths in Finland

Serum cholesterol in 25-64-year old Finns

Bread spread 1978-2011

It is the LDL level that counts!

LDL cholesterol concentrations

Palomäki ja Kovanen Duodecim 2006
Development of atherosclerotic lesions

<table>
<thead>
<tr>
<th>Foam cells</th>
<th>Fatty streak</th>
<th>Intermediate lesions</th>
<th>Atheroma</th>
<th>Fibrotic plaques</th>
<th>Complicated/ruptured plaques</th>
</tr>
</thead>
</table>

0 10 20 30 40 50 60 70 years

Unsymptomatic development of atherosclerosis

Libby P Circulation 2001

Development of atherosclerotic lesions: (AHA-classification)

LDL carries cholesterol into the arterial wall, HDL carries cholesterol out

Pro-atherogenic lipoproteins

LDL 20-25 nm
IDL 25-35 nm
VLDL 35-90 nm

LDL carries cholesterol into the arterial wall, HDL carries cholesterol out

Pro-atherogenic lipoproteins

LDL 20-25 nm
IDL 25-35 nm
VLDL 35-90 nm
4.3.2013

LDL in the extracellular fluid of tissues

In physiological conditions, cholesterol does not accumulate intra- or extracellularly.

The structure of the arterial wall

- **Intima**
- **Media**
- **Adventitia**

The concentration of LDL in the arterial intima is the same or even higher than in circulation

Cells are protected, but LDL accumulates extracellularly.

Lipoproteins enter the arterial intima by transcytosis

Intimal extracellular matrix

- **LDL**
- **VLDL**

LDL binds to proteoglycans via ionic interactions

- **ApoB-100**
- **Glycosaminoglycan disaccharides**

Atherosclerosis study (20 weeks)

Skälén K et al. Nature 2002

Lipid accumulation is followed by macrophage infiltration

Nakahama, Y et al. ATVB 2007; 27: 1159-1165

Fatty streak: Lipoprotein modification

Aggregated and fused LDL particles within the arterial intima

Intimal lipoproteins induce expression of adhesion molecules in the endothelial cells

Fatty streak: Lipoprotein modification

200 nm
4.3.2013

Foam cell formation

Fatty streak

Endotheium

Monocyte/macrophage

Foam cells

Cholesterol balance in macrophages

Heterogeneity of HDL particles

Pathways of cellular cholesterol efflux depend on the degree of apoA-1 lipidation
4.3.2013

Cell death in atherosclerosis—Fibrous cap and necrotic core

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead cells</td>
<td>43 ± 9 %</td>
</tr>
<tr>
<td>Dead macrophages</td>
<td>33 ± 5 %</td>
</tr>
<tr>
<td>Dead SMCs</td>
<td>11 ± 6 %</td>
</tr>
</tbody>
</table>

Geng & Libby. Am J Pathol. 1995; 147

Advanced atherosclerosis: formation of necrotic core

Clearance of apoptotic cells in early atherosclerosis

Plaque rupture

Atheroma

Stable plaque

- Fibrous cap
- Smooth muscle cells
- Inflammatory cells

Vulnerable plaque

- Thin fibrous cap
- Necrotic core

"Thin-cap fibroatheroma" is the killer

Inflammation

Fibrosis

Macrophages

T-cells

Mast cells

Necrotic core
Atherothrombosis

Coronary atherosclerosis develops in specific areas of the vasculature

Hemodynamics: shear stress

Hemodynamics: shear stress
Mechanisms Relating Insulin Resistance and Dyslipidemia

Fat Cells → Liver
IR ×
Insulin

Liver

Fat Cells

IR

Insulin

Liver

Kidney

Fat Cells

IR

Insulin

Liver

Kidney

LDL particle number vs. LDL cholesterol

Small dense LDL

- Increased entry to arterial intima
- Increased binding to intimal proteoglycans → increased retention in the intima
- Increased modification in the arterial intima → increased inflammatory potential
- Decreased binding to LDL receptor → decreased clearance from circulation
Metabolic syndrome & atherosclerosis

Bornfeldt KE & Tabas I Cell Metabolism (2011) 14: 575-585

Entry of sdLDL ↑
Retention & modification of LDL ↑

eNOS activation ↓
→ NO production ↓
→ adhesion molecules ↑

MCP-1 ↑

ER stress

Necrotic lipid core

ER stress

ER stress-induced apoptosis ↑
• Endothelial dysfunction
• Thinning of fibrous cap
• Increased inflammation & lipid core formation