Browsing by Issue Date

Sort by: Order: Results:

Now showing items 1-20 of 668
  • Luomajoki, Alpo (The Society of Forestry in Finland - The Finnish Forest Research Institute, 1999)
    Male flowering was studied at the canopy level in 10 silver birch (Betula pendula Roth) stands from 8 localities and in 14 downy birch (B. pubescens Ehrh.) stands from 10 localities in Finland from 1963 to 1973. Distributions of cumulative pollen catches were compared to the normal Gaussian distribution. The basis for the timing of flowering was the 50 per cent point of the anthesis-fitted normal distribution. To eliminate effects of background pollen, only the central, normally distributed part of the cumulative distribution was used. Development up to the median point of the distribution was measured and tested in calendar days, in degree days (> 5 °C) and in period units. The count of each parameter began on and included March 19. Male flowering in silver birch occurred from late April to late June depending on latitude, and flowering in downy birch took place from early May to early July. The heat sums needed for male flowering varied in downy birch stands latitudinally but there was practically no latitudinal variation in heat sums needed for silver birch flowering. The amount of male flowering in stands of both birch species were found to have a large annual variation but without any clear periodicity. The between years pollen catch variation in stands of either birch species did not show any significant latitudinal correlation in contrast to Norway spruce stands. The period unit heat sum gave the most accurate forecast of the timing of flowering for 60 per cent of the silver birch stands and for 78.6 per cent of the for downy birch stands. Calendar days, however, gave the best forecast for silver birch in 25 per cent of the cases, while degree days gave the best forecast for downy birch in 21.4 per cent of the cases. Silver birch seems to have a local inclination for a more fixed flowering date compared to downy birch, which could mean a considerable photoperiodic influence on flowering time of silver birch. Silver birch and downy birch had different geographical correlations. Frequent hybridization of birch species occurs more often in northern Finland in than in more southern latitudes. The different timing in flowering caused increasing scatter in flowering times in the north, especially in the case of downy birch. The chance of simultaneous flowering of silver birch and downy birch so increased northwards due to a more variable climate and also higher altitudinal variations. Compared with conifers, the reproduction cycles of both birch species were found to be well protected from damage by frost.
  • Morasse, Johanne M. G. (The Society of Forestry in Finland - The Finnish Forest Research Institute, 1998)
    Two methods of pre-harvest inventory were designed and tested on three cutting sites containing a total of 197 500 m3 of wood. These sites were located on flat-ground boreal forests located in northwestern Quebec. Both methods studied involved scaling of trees harvested to clear the road path one year (or more) prior to harvest of adjacent cut-blocks. The first method (ROAD) considers the total road right-of-way volume divided by the total road area cleared. The resulting volume per hectare is then multiplied by the total cut-block area scheduled for harvest during the following year to obtain the total estimated cutting volume. The second method (STRATIFIED) also involves scaling of trees cleared from the road. However, in STRATIFIED, log scaling data are stratified by forest stand location. A volume per hectare is calculated for each stretch of road that crosses a single forest stand. This volume per hectare is then multiplied by the remaining area of the same forest stand scheduled for harvest one year later. The sum of all resulting estimated volumes per stand gives the total estimated cutting-volume for all cut-blocks adjacent to the studied road. A third method (MNR) was also used to estimate cut-volumes of the sites studied. This method represents the actual existing technique for estimating cutting volume in the province of Quebec. It involves summing the cut volume for all forest stands. The cut volume is estimated by multiplying the area of each stand by its estimated volume per hectare obtained from standard stock tables provided by the governement. The resulting total estimated volume per cut-block for all three methods was then compared with the actual measured cut-block volume (MEASURED). This analysis revealed a significant difference between MEASURED and MNR methods with the MNR volume estimate being 30 % higher than MEASURED. However, no significant difference from MEASURED was observed for volume estimates for the ROAD and STRATIFIED methods which respectively had estimated cutting volumes 19 % and 5 % lower than MEASURED. Thus the ROAD and STRATIFIED methods are good ways to estimate cut-block volumes after road right-of-way harvest for conditions similar to those examined in this study.
  • Huang, Wending (The Society of Forestry in Finland - The Finnish Forest Research Institute, 1998)
    Productive coexistence and coexistence gain of populations were studied using nine years' data from field experiments of Taxodium ascendens-intercrop systems in Lixiahe, Jiangsu Province, China. A theoretical framework for productive coexistence in agroforestry was developed. Interaction patterns between trees and intercrops were presented within this framework. A model framework was developed to describe the coexistence gain and interaction of populations in T. ascendens-intercrop systems. Facilitation and resource sharing were identified as main contribution to the advantage of species combination in agroforestry. The model of population interaction developed in the present study was accepted for describing the interaction of populations in T. ascendens-intercrop systems, because it explained a high proportion of the variance of experimental data and fitted well the observations in most intercropping types. The model developed in the present study provides flexibility for describing different patterns of intra- and inter-specific interactions. Model coefficients were applied to the determination of the ecological compatibility of species. Managed T. ascendens-intercrop systems were advantageous as compared to a monoculture of trees or arable crops. In T. ascendens stands up to the age of three, arable crops contributed about 50-80 % of the total biomass yield of agroforestry. The diameter or height growth of T. ascendens was not significantly influenced by intercrops, indicating that intercropping under trees produced extra yields but did not depress the tree growth. When the trees were young (during the first three years), T. ascendens did not depress the crop yields, and a land equivalent ratio greater than unity was obtained together with a high yield of both components. The diameter and height of the trees were similar in four spacing configurations with an equal number of trees per hectare up to the age of eight, but wider between-rows open range were beneficial for the intercrops. The relationship between open-ranges and species coexistence was also analysed and the distribution of soil nutrients studied.
  • Kareinen, Timo; Nissinen, Ari; Ilvesniemi, Hannu (The Society of Forestry in Finland - The Finnish Forest Research Institute, 1998)
    In this study we analyze how the ion concentrations in forest soil solution are determined by hydrological and biogeochemical processes. A dynamic model ACIDIC was developed, including processes common to dynamic soil acidification models. The model treats up to eight interacting layers and simulates soil hydrology, transpiration, root water and nutrient uptake, cation exchange, dissolution and reactions of Al hydroxides in solution, and the formation of carbonic acid and its dissociation products. It includes also a possibility to a simultaneous use of preferential and matrix flow paths, enabling the throughfall water to enter the deeper soil layers in macropores without first reacting with the upper layers. Three different combinations of routing the throughfall water via macro- and micropores through the soil profile is presented. The large vertical gradient in the observed total charge was simulated succesfully. According to the simulations, gradient is mostly caused by differences in the intensity of water uptake, sulfate adsorption and organic anion retention at the various depths. The temporal variations in Ca and Mg concentrations were simulated fairly well in all soil layers. For H+, Al and K there were much more variation in the observed than in the simulated concentrations. Flow in macropores is a possible explanation for the apparent disequilibrium of the cation exchange for H+ and K, as the solution H+ and K concentrations have great vertical gradients in soil. The amount of exchangeable H+ increased in the O and E horizons and decreased in the Bs1 and Bs2 horizons, the net change in whole soil profile being a decrease. A large part of the decrease of the exchangeable H+ in the illuvial B horizon was caused by sulfate adsorption. The model produces soil water amounts and solution ion concentrations which are comparable to the measured values, and it can be used in both hydrological and chemical studies of soils.
  • Hartikainen, Timo (The Society of Forestry in Finland - The Finnish Forest Research Institute, 1997)
    The methods of secondary wood processing are assumed to evolve over time and to affect the requirements set for the wood material and its suppliers. The study aimed at analysing the industrial operating modes applied by joinery and furniture manufacturers as sawnwood users. Industrial operating mode was defined as a pattern of important decisions and actions taken by a company which describes the company's level of adjustment in the late-industrial transition. A non-probabilistic sample of 127 companies was interviewed, including companies from Denmark, Germany, the Netherlands, and Finland. Fifty-two of the firms were furniture manufacturers and the other 75 were producing windows and doors. Variables related to business philosophy, production operations, and supplier choice criteria were measured and used as a basis for a customer typology; variables related to wood usage and perceived sawmill performance were measured to be used to profile the customer types. Factor analysis was used to determine the latent dimensions of industrial operating mode. Canonical correlations analysis was applied in developing the final base for classifying the observations. Non-hierarchical cluster analysis was employed to build a five-group typology of secondary wood processing firms; these ranged from traditional mass producers to late-industrial flexible manufacturers. There is a clear connection between the amount of late-industrial elements in a company and the share of special and customised sawnwood it uses. Those joinery or furniture manufacturers that are more late-industrial also are likely to use more component-type wood material and to appreciate customer-oriented technical precision. The results show that the change is towards the use of late-industrial sawnwood materials and late-industrial supplier relationships.
  • Varjo, Jari (The Finnish Society of Forest Science and The Finnish Forest Research Institute, 1997)
    A method was developed for relative radiometric calibration of single multitemporal Landsat TM image, several multitemporal images covering each others, and several multitemporal images covering different geographic locations. The radiometricly calibrated difference images were used for detecting rapid changes on forest stands. The nonparametric Kernel method was applied for change detection. The accuracy of the change detection was estimated by inspecting the image analysis results in field. The change classification was applied for controlling the quality of the continuously updated forest stand information. The aim was to ensure that all the manmade changes and any forest damages were correctly updated including the attribute and stand delineation information. The image analysis results were compared with the registered treatments and the stand information base. The stands with discrepancies between these two information sources were recommended to be field inspected.
  • Nurmi, Juha (The Society of Forestry in Finland, 1997)
    The effective heating values of the above and below ground biomass components of mature Scots pine (Pinus sylvestris), Norway spruce (Picea abies), downy birch (Betula pubescens), silver birch (Betula pendula), grey alder (Alnus incana), black alder (Alnus glutinosa) and trembling aspen (Populus tremula) were studied. Each sample tree was divided into wood, bark and foliage components. Bomb calorimetry was used to determine the calorimetric heating values. The species is a significant factor in the heating value of individual tree components. The heating value of the wood proper is highest in conifers. Broad-leaved species have a higher heating value of bark than conifers. The species factor diminishes when the weighted heating value of crown, whole stems or stump-root-system are considered. The crown material has a higher heating value per unit weight in comparison with fuelwood from small-sized stems or wholetrees. The additional advantages of coniferous crown material are that it is a non-industrial biomass resource and is readily available. The variability of both the chemical composition and the heating value is small in any given tree component of any species. However, lignin, carbohydrate and extractive content were found to vary from one part of the tree to another and to correlate with the heating value.
  • Mason, Euan G.; Whyte, A. Graham D. (The Society of Forestry in Finland - The Finnish Forest Research Institute, 1997)
    A sensitive framework has been developed for modelling young radiata pine survival, its growth and its size class distribution, from time of planting to age 5 or 6 years. The data and analysis refer to the Central North Island region of New Zealand. The survival function is derived from a Weibull probability density function, to reflect diminishing mortality with the passage of time in young stands. An anamorphic family of trends was used, as very little between-tree competition can be expected in young stands. An exponential height function was found to fit best the lower portion of its sigmoid form. The most appropriate basal area/ha exponential function included an allometric adjustment which resulted in compatible mean height and basal area/ha models. Each of these equations successfully represented the effects of several establishment practices by making coefficients linear functions of site factors, management activities and their interactions. Height and diameter distribution modelling techniques that ensured compatibility with stand values were employed to represent the effects of management practices on crop variation. Model parameters for this research were estimated using data from site preparation experiments in the region and were tested with some independent data sets.
  • Uusitalo, Jori (The Society of Forestry in Finland - The Finnish Forest Research Institute, 1997)
    To enhance the utilization of the wood, the sawmills are forced to place more emphasis on planning to master the whole production chain from the forest to the end product. One significant obstacle to integrating the forest-sawmill-market production chain is the lack of appropriate information about forest stands. Since the wood procurement point of view in forest planning systems has been almost totally disregarded there has been a great need to develop an easy and efficient pre-harvest measurement method, allowing separate measurement of stands prior to harvesting. The main purpose of this study was to develop a measurement method for pine stands which forest managers could use in describing the properties of the standing trees for sawing production planning. Study materials were collected from ten Scots pine stands (Pinus sylvestris) located in North Häme and South Pohjanmaa, in southern Finland. The data comprise test sawing data on 314 pine stems, dbh and height measures of all trees and measures of the quality parameters of pine sawlog stems in all ten study stands as well as the locations of all trees in six stands. The study was divided into four sub-studies which deal with pine quality prediction, construction of diameter and dead branch height distributions, sampling designs and applying height and crown height models. The final proposal for the pre-harvest measurement method is a synthesis of the individual sub-studies. Quality analysis resulted in choosing dbh, distance from stump height to the first dead branch (dead branch height), crown height and tree height as the most appropriate quality characteristics of Scots pine. Dbh and dead branch height are measured from each pine sample tree while height and crown height are derived from dbh measures by aid of mixed height and crown height models. Pine and spruce diameter distribution as well as dead branch height distribution are most effectively predicted by the kernel function. Roughly 25 sample trees seems to be appropriate in pure pine stands. In mixed stands the number of sample trees needs to be increased in proportion to the intensity of pines in order to attain the same level of accuracy.
  • Kangas, Jyrki; Loikkanen, Teppo; Pukkala, Timo; Pykäläinen, Jouni (The Society of Forestry in Finland - The Finnish Forest Research Institute, 1996)
    The paper examines the needs, premises and criteria for effective public participation in tactical forest planning. A method for participatory forest planning utilizing the techniques of preference analysis, professional expertise and heuristic optimization is introduced. The techniques do not cover the whole process of participatory planning, but are applied as a tool constituting the numerical core for decision support. The complexity of multi-resource management is addressed by hierarchical decision analysis which assesses the public values, preferences and decision criteria toward the planning situation. An optimal management plan is sought using heuristic optimization. The plan can further be improved through mutual negotiations, if necessary. The use of the approach is demonstrated with an illustrative example, it's merits and challenges for participatory forest planning and decision making are discussed and a model for applying it in general forest planning context is depicted. By using the approach, valuable information can be obtained about public preferences and the effects of taking them into consideration on the choice of the combination of standwise treatment proposals for a forest area. Participatory forest planning calculations, carried out by the approach presented in the paper, can be utilized in conflict management and in developing compromises between competing interests.
  • Ripatti, Pekka (The Society of Forestry in Finland - The Finnish Forest Research Institute, 1996)
    Questions of the small size of non-industrial private forest (NIPF) holdings in Finland are considered and factors affecting their partitioning are analyzed. This work arises out of Finnish forest policy statements in which the small average size of holdings has been seen to have a negative influence on the economics of forestry. A survey of the literature indicates that the size of holdings is an important factor determining the costs of logging and silvicultural operations, while its influence on the timber supply is slight. The empirical data are based on a sample of 314 holdings collected by interviewing forest owners in the years 1980-86. In 1990-91 the same holdings were resurveyed by means of a postal inquiry and partly by interviewing forest owners. The principal objective in compiling the data is to assist in quantifying ownership factors that influence partitioning among different kinds of NIPF holdings. Thus the mechanism of partitioning were described and a maximum likelihood logistic regression model was constructed using seven independent holding and ownership variables. One out of four holdings had undergone partitioning in conjunction with a change in ownership, one fifth among family owned holdings and nearly a half among jointly owned holdings. The results of the logistic regression model indicate, for instance, that the odds on partitioning is about three times greater for jointly owned holdings than for family owned ones. Also, the probabilities of partitioning were estimated and the impact of independent dichotomous variables on the probability of partitioning ranged between 0.02 and 0.10. The low value of the Hosmer-Lemeshow test statistic indicates a good fit of the model and the rate of correct classification was estimated to be 88 per cent with a cutoff point of 0.5. The average size of holdings undergoing ownership changes decreased from 29.9 ha to 28.7 ha over the approximate interval 1983-90. In addition, the transition probability matrix showed that the trends towards smaller size categories mostly involved in the small size categories, less than 20 ha. The results of the study can be used in considering the effects of the small size of holdings for forestry and if the purpose is to influence partitioning through forest or rural policy.
  • Hari, Pertti; Ross, Johan; Mecke, Marja (The Finnish Society of Forest Science and The Finnish Forest Research Institute, 1996)
    The accompanying collective research report is the result of the research project in 1986­90 between The Finnish Academy and the former Soviet Academy of Sciences. The project was organized around common field work in Finland and in the former Soviet Union and theoretical analyses of tree growth determining processes. Based on theoretical analyses, dynamic stand growth models were made and their parameters were determined utilizing the field results. Annual cycle affects the tree growth. Our theoretical approach was based on adaptation to local climate conditions from Lapland to South Russia. The initiation of growth was described as a simple low and high temperature accumulation driven model. Linking the theoretical model with long term temperature data allowed us to analyze what type of temperature response produced favorable outcome in different climates. Initiation of growth consumes the carbohydrate reserves in plants. We measured the dynamics of insoluble and soluble sugars in the very northern and Karelian conditions. Clear cyclical pattern was observed but the differences between locations were surprisingly small. Analysis of field measurements of CO2 exchange showed that irradiance is the dominating factor causing variation in photosynthetic rate in natural conditions during summer. The effect of other factors is so small that they can be omitted without any considerable loss of accuracy. A special experiment carried out in Hyytiälä showed that the needle living space, defined as the ratio between the shoot cylindric volume and needle surface area, correlates with the shoot photosynthesis. The penetration of irradiance into Scots pine canopy is a complicated phenomenon because of the movement of the sun on the sky and the complicated structure of branches and needles. A moderately simple but balanced forest radiation regime submodel was constructed. It consists of the tree crown and forest structure, the gap probability calculation and the consideration of spatial and temporal variation of radiation inside the forest. The common field excursions in different geographical regions resulted in a lot of experimental data of regularities of woody structures. The water transport seems to be a good common factor to analyse these properties of tree structure. There are evident regressions between cross-sectional areas measured at different locations along the water pathway from fine roots to needles. The observed regressions have clear geographical trends. For example, the same cross-sectional area can support three times higher needle mass in South Russia than in Lapland. Geographical trends can also be seen in shoot and needle structure. Analysis of data published by several Russian authors show, that one ton of needles transpire 42 ton of water a year. This annual amount of transpiration seems to be independent of geographical location, year and site conditions. The produced theoretical and experimental material is utilised in the development of stand growth model that describes the growth and development of Scots pine stands in Finland and the former Soviet Union. The core of the model is carbon and nutrient balances. This means that carbon obtained in photosynthesis is consumed for growth and maintenance and nutrients are taken according to the metabolic needs. The annual photosynthetic production by trees in the stand is determined as a function of irradiance and shading during the active period. The utilisation of the annual photosynthetic production to the growth of different components of trees is based on structural regularities. Since the fundamental metabolic processes are the same in all locations the same growth model structure can be applied in the large range of Scots pine. The annual photosynthetic production and structural regularities determining the allocation of resources have geographical features. The common field measurements enable the application of the model to the analysis of growth and development of stands growing on the five locations of experiments. The model enables the analysis of geographical differences in the growth of Scots pine. For example, the annual photosynthetic production of a 100-year-old stand at Voronez is 3.5 times higher than in Lapland. The share consumed to needle growth (30 %) and to growth of branches (5 %) seems to be the same in all locations. In contrast, the share of fine roots is decreasing when moving from north to south. It is 20 % in Lapland, 15 % in Hyytiälä Central Finland and Kentjärvi Karelia and 15 % in Voronez South Russia. The stem masses (115­113 ton/ha) are rather similar in Hyytiälä, Kentjärvi and Voronez, but rather low (50 ton/ha) in Lapland. In Voronez the height of the trees reach 29 m being in Hyytiälä and Kentjärvi 22 m and in Lapland only 14 m. The present approach enables utilization of structural and functional knowledge, gained in places of intensive research, in the analysis of growth and development of any stand. This opens new possibilities for growth research and also for applications in forestry practice.
  • Kaarakka, Vesa (The Society of Forestry in Finland - The Finnish Forest Research Institute, 1996)
    Microcatchment water harvesting (MCWH) improved the survival and growth of planted trees on heavy soils in eastern Kenya five to six years after planting. In the best method, the cross-tied furrow microcatchments, the mean annual increments (MAI; based on the average biomass of living trees multiplied by tree density and survival) of the total and usable biomass in Prosopis juliflora were 2787 and 1610 kg ha-1 a-1 respectively, when the initial tree density was 500 to 1667 trees per hectare. Based on survival, the indigenous Acacia horrida, A. mellifera and A. zanzibarica were the most suitable species for planting using MCWH. When both survival and yield were considered, a local seed source of the introduced P. juliflora was superior to all other species. The MAI in MCWH was at best distinctly higher than that in the natural vegetation (163­307 and 66­111 kg ha-1 a-1 for total and usable biomass respectively); this cannot satisfy the fuelwood demand of concentrated populations, such as towns or irrigation schemes. The density of seeds of woody species in the topsoil was 40.1 seeds m-2 in the Acacia-Commiphora bushland and 12.6 seeds m-2 in the zone between the bushland and the Tana riverine forest. Rehabilitation of woody vegetation using the soil seed bank alone proved difficult due to the lack of seeds of desirable species. The regeneration and dynamics of woody vegetation were also studied both in cleared and undisturbed bushland. A sub-type of Acacia-Commiphora bushland was identified as Acacia reficiens bushland, in which the dominant Commiphora species is C. campestris. Most of the woody species did not have even-aged populations but cohort structures that were skewed towards young individuals. The woody vegetation and the status of soil nutrients were estimated to recover in 15­20 years on Vertic Natrargid soils after total removal of above-ground vegetation.
  • Tyrväinen, Jukka (The Society of Forestry in Finland - The Finnish Forest Research Institute, 1995)
    In the first part of the study, the selected wood and fiber properties were investigated in terms of their occurrence and variation in wood, as well as their relevance from the perspective of thermomechanical pulping process and related end-products. It was concluded that the most important factors were the fiber dimensions, juvenile wood content, and in some cases, the content of heartwood being associated with extremely dry wood with low permeability in spruce. With respect to the above properties, the following three pulpwood assortments of which pulping potential was assumed to vary were formed: wood from regeneration cuttings, first-thinnings wood, and sawmill chips. In the experimental part of the study the average wood and fiber characteristics and their variation were determined for each raw material group prior to pulping. Subsequently, each assortment - equaling about 1500 m3 roundwood - was pulped separately for a 24 h period, at constant process conditions. The properties of obtained newsgrade thermomechanical pulps were then determined. Thermomechanical pulping (TMP) from sawmill chips had the highest proportion of long fibers, smallest proportion of fines, and had generally the coarsest and longest fibers. TMP from first-thinnings wood was just the opposite, whereas that from regeneration cuttings fell in between the above two extremes. High proportion of dry heartwood in wood originating from regeneration cuttings produced a slightly elevated shives content. However, no differences were found in pulp specific energy consumption. The obtained pulp tear index was clearly best in TMP made from sawmill chips and poorest in pulp from first-thinnings wood, which had generally inferior strength properties. No dramatical differences in any of the strength properties were found between pulp from sawmill residual wood and regeneration cuttings. Pulp optical properties were superior in TMP from first-thinnings. Unexpectedly, no noticeable differences, which could be explained with fiber morphology, were found in sheet density, bulk, air permeance or roughness between the three pulps. The most important wood quality factors in this study were the fiber length, fiber cross-sectional dimensions and percentage juvenile wood. Differences found in the quality of TMP manufactured from the above spruce assortments suggest that they could be segregated and pulped separately to obtain specific product characteristics, i.e., for instance tailor-made end-products, and to minimize unnecessary variation in the raw material quality, and hence, pulp quality.
  • Pesonen, Mauno; Kettunen, Arto; Räsänen, Petri (The Society of Forestry in Finland - The Finnish Forest Research Institute, 1995)
    The factors affecting the non-industrial, private forest landowners' (hereafter referred to using the acronym NIPF) strategic decisions in management planning are studied. A genetic algorithm is used to induce a set of rules predicting potential cut of the landowners' choices of preferred timber management strategies. The rules are based on variables describing the characteristics of the landowners and their forest holdings. The predictive ability of a genetic algorithm is compared to linear regression analysis using identical data sets. The data are cross-validated seven times applying both genetic algorithm and regression analyses in order to examine the data-sensitivity and robustness of the generated models. The optimal rule set derived from genetic algorithm analyses included the following variables: mean initial volume, landowner's positive price expectations for the next eight years, landowner being classified as farmer, and preference for the recreational use of forest property. When tested with previously unseen test data, the optimal rule set resulted in a relative root mean square error of 0.40. In the regression analyses, the optimal regression equation consisted of the following variables: mean initial volume, proportion of forestry income, intention to cut extensively in future, and positive price expectations for the next two years. The R2 of the optimal regression equation was 0.34 and the relative root mean square error obtained from the test data was 0.38. In both models, mean initial volume and positive stumpage price expectations were entered as significant predictors of potential cut of preferred timber management strategy. When tested with the complete data set of 201 observations, both the optimal rule set and the optimal regression model achieved the same level of accuracy.
  • Lahti, Tapani (The Society of Forestry in Finland - The Finnish Forest Research Institute, 1995)
    The relationship between site characteristics and understorey vegetation composition was analysed with quantitative methods, especially from the viewpoint of site quality estimation. Theoretical models were applied to an empirical data set collected from the upland forests of southern Finland comprising 104 sites dominated by Scots pine (Pinus sylvestris L.), and 165 sites dominated by Norway spruce (Picea abies (L.) Karsten). Site index H100 was used as an independent measure of site quality. A new model for the estimation of site quality at sites with a known understorey vegetation composition was introduced. It is based on the application of Bayes' theorem to the density function of site quality within the study area combined with the species-specific presence-absence response curves. The resulting posterior probability density function may be used for calculating an estimate for the site variable. Using this method, a jackknife estimate of site index H100 was calculated separately for pine- and spruce-dominated sites. The results indicated that the cross-validation root mean squared error (RMSEcv) of the estimates improved from 2.98 m down to 2.34 m relative to the "null" model (standard deviation of the sample distribution) in pine-dominated forests. In spruce-dominated forests RMSEcv decreased from 3.94 m down to 3.16 m. In order to assess these results, four other estimation methods based on understorey vegetation composition were applied to the same data set. The results showed that none of the methods was clearly superior to the others. In pine-dominated forests, RMSEcv varied between 2.34 and 2.47 m, and the corresponding range for spruce-dominated forests was from 3.13 to 3.57 m.
  • Rummukainen, Arto; Alanne, Heikki; Mikkonen, Esko (The Society of Forestry in Finland - The Finnish Forest Research Institute, 1995)
    Linear optimization model was used to calculate seven wood procurement scenarios for years 1990, 2000 and 2010. Productivity and cost functions for seven cutting, five terrain transport, three long distance transport and various work supervision and scaling methods were calculated from available work study reports. All method's base on Nordic cut to length system. Finland was divided in three parts for description of harvesting conditions. Twenty imaginary wood processing points and their wood procurement areas were created for these areas. The procurement systems, which consist of the harvesting conditions and work productivity functions, were described as a simulation model. In the LP-model the wood procurement system has to fulfil the volume and wood assortment requirements of processing points by minimizing the procurement cost. The model consists of 862 variables and 560 restrictions. Results show that it is economical to increase the mechanical work in harvesting. Cost increment alternatives effect only little on profitability of manual work. The areas of later thinnings and seed tree- and shelter wood cuttings increase on cost of first thinnings. In mechanized work one method, 10-tonne one grip harvester and forwarder, is gaining advantage among other methods. Working hours of forwarder are decreasing opposite to the harvester. There is only little need to increase the number of harvesters and trucks or their drivers from today's level. Quite large fluctuations in level of procurement and cost can be handled by constant number of machines, by alternating the number of season workers and by driving machines in two shifts. It is possible, if some environmental problems of large scale summer time harvesting can be solved.
  • Pesonen, Mauno (The Society of Forestry in Finland - The Finnish Forest Research Institute, 1995)
    In the study, the potential allowable cut in the district of Pohjois-Savo - based on the non-industrial private forest landowners' (NIPF) choices of timber management strategies - was clarified. Alternative timber management strategies were generated, and the choices and factors affecting the choices of timber management strategies by NIPF landowners were studied. The choices of timber management strategies were solved by maximizing the utility functions of the NIPF landowners. The parameters of the utility functions were estimated using the Analytic Hierarchy Process (AHP). The level of the potential allowable cut was compared to the cutting budgets based on the 7th and 8th National Forest Inventories (NFI7 and NFI8), to the combining of private forestry plans, and to the realized drain from non-industrial private forests. The potential allowable cut was calculated using the same MELA system as has been used in the calculation of the national cutting budget. The data consisted of the NIPF holdings (from the TASO planning system) that had been inventoried compartmentwise and had forestry plans made during the years 1984-1992. The NIPF landowners' choices of timber management strategies were clarified by a two-phase mail inquiry. The most preferred strategy obtained was "sustainability" (chosen by 62 % of landowners). The second in order of preference was "finance" (17 %) and the third was "saving" (11 %). "No cuttings", and "maximum cuttings" were the least preferred (9 % and 1 %, resp.). The factors promoting the choices of strategies with intensive cuttings were a) "farmer as forest owner" and "owning fields", b) "increase in the size of the forest holding", c) agriculture and forestry orientation in production, d) "decreasing short term stumpage earning expectations", e) "increasing intensity of future cuttings", and f) "choice of forest taxation system based on site productivity". The potential allowable cut defined in the study was 20 % higher than the average of the realized drain during the years 1988-1993, which in turn, was at the same level as the cutting budget based on the combining of forestry plans in eastern Finland. Respectively, the potential allowable cut defined in the study was 12 % lower than the NFI8-based greatest sustained allowable cut for the 1990s. Using the method presented in this study, timber management strategies can be clarified for non-industrial private forest landowners in different parts of Finland. Based on the choices of timber managemet strategies, regular cutting budgets can be calculated more realistically than before.
  • Väisänen, Rauno; Heliövaara, Kari (The Society of Forestry in Finland - The Finnish Forest Research Institute, 1994)
    The presence/absence data of twenty-seven forest insect taxa (e.g. Retinia resinella, Formica spp., Pissodes spp., several scolytids) and recorded environmental variation were used to investigate the applicability of modelling insect occurrence based on satellite imagery. The sampling was based on 1800 sample plots (25 m by 25 m) placed along the sides of 30 equilateral triangles (side 1 km) in a fragmented forest area (approximately 100 km2) in Evo, S Finland. The triangles were overlaid on land use maps interpreted from satellite images (Landsat TM 30 m multispectral scanner imagery 1991) and digitized geological maps. Insect occurrence was explained using either environmental variables measured in the field or those interpreted from the land use and geological maps. The fit of logistic regression models varied between species, possibly because some species may be associated with the characteristics of single trees while other species with stand characteristics. The occurrence of certain insect species at least, especially those associated with Scots pine, could be relatively accurately assessed indirectly on the basis of satellite imagery and geological maps. Models based on both remotely sensed and geological data better predicted the distribution of forest insects except in the case of Xylechinus pilosus, Dryocoetes sp. and Trypodendron lineatum, where the differences were relatively small in favour of the models based on field measurements. The number of species was related to habitat compartment size and distance from the habitat edge calculated from the land use maps, but logistic regressions suggested that other environmental variables in general masked the effect of these variables in species occurrence at the present scale.
  • Kubin, Eero; Kemppainen, Lauri (The Society of Forestry in Finland - The Finnish Forest Research Institute, 1994)
    The effect of scarification, ploughing and cross-directional plouhing on temperature conditions in the soil and adjacent air layer have been studied during 11 consecutive growth periods by using an unprepared clear-cut area as a control site. The maximum and minimum temperatures were measured daily in the summer months, and other temperature observations were made at four-hour intervals by means of a Grant measuring instrument. The development of the seedling stand was also followed in order to determine its shading effect on the soil surface. Soil preparation decreased the daily temperature amplitude of the air at the height of 10 cm. The maximum temperatures on sunny days were lower in the tilts of the ploughed and in the humps of the cross-directional ploughed sites compared with the unprepared area. Correspondingly, the night temperatures were higher and so the soil preparation considerably reduced the risk of night frost. In the soil at the depth of 5 cm, soil preparation increased daytime temperatures and reduced night temperatures compared with unprepared area. The maximum increase in monthly mean temperatures was almost 5 °C, and the daily variation in the surface parts of the tilts and humps increased so that excessively high temperatures for the optimal growth of the root system were measured from time to time. The temperature also rose at the depths of 50 and 100 cm. Soil preparation also increased the cumulative temperature sum. The highest sums accumulated during the summer months were recorded at the depth of 5 cm in the humps of cross-directional ploughed area (1127 dd.) and in the tilts of the ploughed area (1106 dd.), while the corresponding figure in the unprepared soil was 718 dd. At the height of 10 cm the highest temperature sum was 1020 dd. in the hump, the corresponding figure in the unprepared area being 925 dd. The incidence of high temperature amplitudes and percentage of high temperatures at the depth of 5 cm decreased most rapidly in the humps of cross-directional ploughed area and in the ploughing tilts towards the end of the measurement period. The decrease was attributed principally to the compressing of tilts, the ground vegetation succession and the growth of seedlings. The mean summer temperature in the unprepared area was lower than in the prepared area and the difference did not diminish during the period studied. The increase in temperature brought about by soil preparation thus lasts at least more than 10 years.