An Efficient Method for Large Margin Parameter
Show simple item record
dc.contributor.author |
Yu, Huizhen |
en |
dc.contributor.author |
Rousu, Juho |
en |
dc.date.accessioned |
2008-01-14T08:37:07Z |
en |
dc.date.accessioned |
2009-06-17T13:51:24Z |
|
dc.date.available |
2008-01-14T08:37:07Z |
en |
dc.date.available |
2009-06-17T13:51:24Z |
|
dc.date.issued |
2008-01-14T08:37:07Z |
en |
dc.identifier.uri |
http://hdl.handle.net/10138/1140 |
|
dc.description.abstract |
We consider structured prediction problems with a parametrized linear prediction function,
and the associated parameter optimization problems in large margin type of discriminative
training. We propose a dual optimization approach which uses the restricted simplicial decomposition
method to optimize a reparametrized dual problem. Our reparametrization reduces the
dimension of the space of the dual function to one that is linear in the number of parameters
and training examples, and hence independent of the dimensionality of the prediction outputs.
This in conjunction with simplicial decomposition makes our approach efficient. We discuss the
connections of our approach with related earlier works, and we show its advantages. |
en |
dc.language.iso |
en |
en |
dc.relation.ispartofseries |
Dept. of Computer Science Series of Publications C |
en |
dc.relation.ispartofseries |
C-2007-87 |
en |
dc.title |
An Efficient Method for Large Margin Parameter |
en |
dc.type |
Technical Report |
en |
dc.identifier.laitoskoodi |
523 |
fi |
dc.creator.corporateName |
Tietojenkäsittelytieteen laitos |
fi |
dc.creator.corporateName |
Department of Computer Science |
en |
dc.creator.corporateName |
Datavetenskap, Institutionen för |
sv |
Files in this item
Total number of downloads: Loading...
This item appears in the following Collection(s)
Show simple item record