Heuristic Hyper-minimization of Finite State Lexicons

Näytä kaikki kuvailutiedot



Pysyväisosoite

http://hdl.handle.net/10138/136266

Lähdeviite

Drobac , S , Linden , K , Pirinen , T & Silfverberg , M 2014 , Heuristic Hyper-minimization of Finite State Lexicons . in Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14) . vol. 9 , #784 , European Language Resources Association (ELRA) , Reykjavik, Iceland , Language Resource and Evaluation Conference , Reykjavik , Iceland , 26/05/2014 .

Julkaisun nimi: Heuristic Hyper-minimization of Finite State Lexicons
Tekijä: Drobac, Senka; Linden, Krister; Pirinen, Tommi; Silfverberg, Miikka
Tekijän organisaatio: Department of Modern Languages 2010-2017
Krister Linden / Research Group
Phonetics and Speech Synthesis
Julkaisija: European Language Resources Association (ELRA)
Päiväys: 2014-05-26
Kieli: eng
Sivumäärä: 6
Kuuluu julkaisusarjaan: Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)
ISBN: 978-2-9517408-8-4
978-2-9517408-8-4
URI: http://hdl.handle.net/10138/136266
Tiivistelmä: Flag diacritics, which are special multi-character symbols executed at runtime, enable optimising finite-state networks by combining identical sub-graphs of its transition graph. Traditionally, the feature has required linguists to devise the optimisations to the graph by hand alongside the morphological description. In this paper, we present a novel method for discovering flag positions in morphological lexicons automatically, based on the morpheme structure implicit in the language description. With this approach, we have gained significant decrease in the size of finite-state networks while maintaining reasonable application speed. The algorithm can be applied to any language description, where the biggest achievements are expected in large and complex morphologies. The most noticeable reduction in size we got with a morphological transducer for Greenlandic, whose original size is on average about 15 times larger than other morphologies. With the presented hyper-minimization method, the transducer is reduced to 10,1% of the original size, with lookup speed decreased only by 9,5%.
Kuvaus: Proceeding volume: 9
Avainsanat: 113 Computer and information sciences
finite-state transducers
hyper-minimization
6121 Languages
lexicon
Vertaisarvioitu: Kyllä
Pääsyrajoitteet: openAccess
Rinnakkaistallennettu versio: publishedVersion


Tiedostot

Latausmäärä yhteensä: Ladataan...

Tiedosto(t) Koko Formaatti Näytä
Hyperminimization1.pdf 528.8KB PDF Avaa tiedosto

Viite kuuluu kokoelmiin:

Näytä kaikki kuvailutiedot