TreeDT : tree pattern mining for gene mapping

Visa fullständig post



Permalänk

http://hdl.handle.net/10138/143994

Citation

Sevon , P , Toivonen , H & Ollikainen , V 2006 , ' TreeDT : tree pattern mining for gene mapping ' , IEEE/ACM Transactions on Computational Biology and Bioinformatics , vol. 3 , no. 2 , pp. 174-185 .

Titel: TreeDT : tree pattern mining for gene mapping
Författare: Sevon, Petteri; Toivonen, Hannu; Ollikainen, Vesa
Upphovmannens organisation: Department of Computer Science
Discovery Research Group/Prof. Hannu Toivonen
Datum: 2006
Språk: eng
Sidantal: 12
Tillhör serie: IEEE/ACM Transactions on Computational Biology and Bioinformatics
ISSN: 1545-5963
Permanenta länken (URI): http://hdl.handle.net/10138/143994
Abstrakt: We describe TreeDT, a novel association-based gene mapping method. Given a set of disease-associated haplotypes and a set of control haplotypes, TreeDT predicts likely locations of a disease susceptibility gene. TreeDT extracts, essentially in the form of haplotype trees, information about historical recombinations in the population: A haplotype tree constructed at a given chromosomal location is an estimate of the genealogy of the haplotypes. TreeDT constructs these trees for all locations on the given haplotypes and performs a novel disequilibrium test on each tree: Is there a small set of subtrees with relatively high proportions of disease-associated chromosomes, suggesting shared genetic history for those and a likely disease gene location? We give a detailed description of TreeDT and the tree disequilibrium tests, we analyze the algorithm formally, and we evaluate its performance experimentally on both simulated and real data sets. Experimental results demonstrate that TreeDT has high accuracy on difficult mapping tasks and comparisons to other methods (EATDT, HPM, TDT) show that TreeDT is very competitive.We describe TreeDT, a novel association-based gene mapping method. Given a set of disease-associated haplotypes and a set of control haplotypes, TreeDT predicts likely locations of a disease susceptibility gene. TreeDT extracts, essentially in the form of haplotype trees, information about historical recombinations in the population: A haplotype tree constructed at a given chromosomal location is an estimate of the genealogy of the haplotypes. TreeDT constructs these trees for all locations on the given haplotypes and performs a novel disequilibrium test on each tree: Is there a small set of subtrees with relatively high proportions of disease-associated chromosomes, suggesting shared genetic history for those and a likely disease gene location? We give a detailed description of TreeDT and the tree disequilibrium tests, we analyze the algorithm formally, and we evaluate its performance experimentally on both simulated and real data sets. Experimental results demonstrate that TreeDT has high accuracy on difficult mapping tasks and comparisons to other methods (EATDT, HPM, TDT) show that TreeDT is very competitive.We describe TreeDT, a novel association-based gene mapping method. Given a set of disease-associated haplotypes and a set of control haplotypes, TreeDT predicts likely locations of a disease susceptibility gene. TreeDT extracts, essentially in the form of haplotype trees, information about historical recombinations in the population: A haplotype tree constructed at a given chromosomal location is an estimate of the genealogy of the haplotypes. TreeDT constructs these trees for all locations on the given haplotypes and performs a novel disequilibrium test on each tree: Is there a small set of subtrees with relatively high proportions of disease-associated chromosomes, suggesting shared genetic history for those and a likely disease gene location? We give a detailed description of TreeDT and the tree disequilibrium tests, we analyze the algorithm formally, and we evaluate its performance experimentally on both simulated and real data sets. Experimental results demonstrate that TreeDT has high accuracy on difficult mapping tasks and comparisons to other methods (EATDT, HPM, TDT) show that TreeDT is very competitive.
Subject: 113 Computer and information sciences
Referentgranskad: Ja
Användningsbegränsning: openAccess
Parallelpublicerad version: publishedVersion


Filer under denna titel

Totalt antal nerladdningar: Laddar...

Filer Storlek Format Granska
treedt_tcbb_06.pdf 1.269Mb PDF Granska/Öppna

Detta dokument registreras i samling:

Visa fullständig post