Biotic stress accelerates formation of climate-relevant aerosols in boreal forests

Show full item record



Joutsensaari , J , Yli-Pirilä , P , Korhonen , H , Arola , A , Blande , J D , Heijari , J , Kivimäenpää , M , Mikkonen , S , Hao , L , Miettinen , P , Lyytikainen-Saarenmaa , P , Faiola , C L , Laaksonen , A & Holopainen , J K 2015 , ' Biotic stress accelerates formation of climate-relevant aerosols in boreal forests ' , Atmospheric Chemistry and Physics , vol. 15 , no. 21 , pp. 12139-12157 .

Title: Biotic stress accelerates formation of climate-relevant aerosols in boreal forests
Author: Joutsensaari, Jorma; Yli-Pirilä, Pasi; Korhonen, Hannele; Arola, Antti; Blande, James D.; Heijari, Juha; Kivimäenpää, Minna; Mikkonen, S.; Hao, Liging; Miettinen, Pasi; Lyytikainen-Saarenmaa, Päivi; Faiola, C. L.; Laaksonen, Ari; Holopainen, Jarmo K.
Contributor organization: Department of Forest Sciences
Forest Health Group
Forest Ecology and Management
Date: 2015
Language: eng
Number of pages: 19
Belongs to series: Atmospheric Chemistry and Physics
ISSN: 1680-7316
Abstract: Boreal forests are a major source of climate-relevant biogenic secondary organic aerosols (SOAs) and will be greatly influenced by increasing temperature. Global warming is predicted to not only increase emissions of reactive biogenic volatile organic compounds (BVOCs) from vegetation directly but also induce large-scale insect outbreaks, which significantly increase emissions of reactive BVOCs. Thus, climate change factors could substantially accelerate the formation of biogenic SOAs in the troposphere. In this study, we have combined results from field and laboratory experiments, satellite observations and global-scale modelling in order to evaluate the effects of insect herbivory and large-scale outbreaks on SOA formation and the Earth's climate. Field measurements demonstrated 11-fold and 20-fold increases in monoterpene and sesquiterpene emissions respectively from damaged trees during a pine sawfly (Neodiprion sertifer) outbreak in eastern Finland. Laboratory chamber experiments showed that feeding by pine weevils (Hylobius abietis) increased VOC emissions from Scots pine and Norway spruce seedlings by 10-50 fold, resulting in 200-1000-fold increases in SOA masses formed via ozonolysis. The influence of insect damage on aerosol concentrations in boreal forests was studied with a global chemical transport model GLOMAP and MODIS satellite observations. Global-scale modelling was performed using a 10-fold increase in monoterpene emission rates and assuming 10% of the boreal forest area was experiencing outbreak. Results showed a clear increase in total particulate mass (local max. 480 %) and cloud condensation nuclei concentrations (45 %). Satellite observations indicated a 2-fold increase in aerosol optical depth over western Canada's pine forests in August during a bark beetle outbreak. These results suggest that more frequent insect outbreaks in a warming climate could result in substantial increase in biogenic SOA formation in the boreal zone and, thus, affect both aerosol direct and indirect forcing of climate at regional scales. The effect of insect outbreaks on VOC emissions and SOA formation should be considered in future climate predictions.
1181 Ecology, evolutionary biology
1183 Plant biology, microbiology, virology
4112 Forestry
114 Physical sciences
Peer reviewed: Yes
Rights: cc_by
Usage restriction: openAccess
Self-archived version: publishedVersion

Files in this item

Total number of downloads: Loading...

Files Size Format View
acp_15_12139_2015.pdf 3.023Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record