Contribution from biogenic organic compounds to particle growth during the 2010 BEACHON-ROCS campaign in a Colorado temperate needleleaf forest

Show full item record



Permalink

http://hdl.handle.net/10138/161567

Citation

Zhou , L , Gierens , R , Sogachev , A , Mogensen , D , Ortega , J , Smith , J N , Harley , P C , Prenni , A J , Levin , E J T , Turnipseed , A , Rusanen , A , Smolander , S , Guenther , A B , Kulmala , M , Karl , T & Boy , M 2015 , ' Contribution from biogenic organic compounds to particle growth during the 2010 BEACHON-ROCS campaign in a Colorado temperate needleleaf forest ' , Atmospheric Chemistry and Physics , vol. 15 , no. 15 , pp. 8643-8656 . https://doi.org/10.5194/acp-15-8643-2015

Title: Contribution from biogenic organic compounds to particle growth during the 2010 BEACHON-ROCS campaign in a Colorado temperate needleleaf forest
Author: Zhou, L.; Gierens, R.; Sogachev, A.; Mogensen, D.; Ortega, J.; Smith, J. N.; Harley, P. C.; Prenni, A. J.; Levin, E. J. T.; Turnipseed, A.; Rusanen, A.; Smolander, S.; Guenther, A. B.; Kulmala, Markku; Karl, T.; Boy, M.
Contributor: University of Helsinki, Department of Physics
University of Helsinki, Department of Physics
University of Helsinki, Department of Physics
University of Helsinki, Department of Physics
University of Helsinki, Department of Physics
University of Helsinki, Department of Physics
University of Helsinki, Department of Physics
Date: 2015
Language: eng
Number of pages: 14
Belongs to series: Atmospheric Chemistry and Physics
ISSN: 1680-7316
URI: http://hdl.handle.net/10138/161567
Abstract: New particle formation (NPF) is an important atmospheric phenomenon. During an NPF event, particles first form by nucleation and then grow further in size. The growth step is crucial because it controls the number of particles that can become cloud condensation nuclei. Among various physical and chemical processes contributing to particle growth, condensation by organic vapors has been suggested as important. In order to better understand the influence of biogenic emissions on particle growth, we carried out modeling studies of NPF events during the BEACHON-ROCS (Biohydro-atmosphere interactions of Energy, Aerosol, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Organic Carbon Study) campaign at Manitou Experimental Forest Observatory in Colorado, USA. The site is representative of the semi-arid western USA. With the latest Criegee intermediate reaction rates implemented in the chemistry scheme, the model underestimates sulfuric acid concentration by 50 %, suggesting either missing sources of atmospheric sulfuric acid or an overestimated sink term. The results emphasize the contribution from biogenic volatile organic compound emissions to particle growth by demonstrating the effects of the oxidation products of monoterpenes and 2-Methyl-3-buten-2-ol (MBO). Monoterpene oxidation products are shown to influence the nighttime particle loadings significantly, while their concentrations are insufficient to grow the particles during the day. The growth of ultrafine particles in the daytime appears to be closely related to the OH oxidation products of MBO.
Subject: CLOUD CONDENSATION NUCLEI
ATMOSPHERIC AEROSOL NUCLEATION
REACTION MASS-SPECTROMETRY
SULFURIC-ACID
BOREAL FOREST
TROPOSPHERIC DEGRADATION
CCN CONCENTRATIONS
BOUNDARY-LAYER
INITIAL STEPS
NEW-MODEL
114 Physical sciences
Rights:


Files in this item

Total number of downloads: Loading...

Files Size Format View
acp_15_8643_2015.pdf 537.3Kb PDF View/Open

This item appears in the following Collection(s)

Show full item record