Low hygroscopic scattering enhancement of boreal aerosol and the implications for a columnar optical closure study

Show full item record




Zieger , P , Aalto , P P , Aaltonen , V , Aijala , M , Backman , J , Hong , J , Komppula , M , Krejci , R , Laborde , M , Lampilahti , J , de Leeuw , G , Pfuller , A , Rosati , B , Tesche , M , Tunved , P , Väänänen , R & Petaja , T 2015 , ' Low hygroscopic scattering enhancement of boreal aerosol and the implications for a columnar optical closure study ' , Atmospheric Chemistry and Physics , vol. 15 , no. 13 , pp. 7247-7267 . https://doi.org/10.5194/acp-15-7247-2015

Title: Low hygroscopic scattering enhancement of boreal aerosol and the implications for a columnar optical closure study
Author: Zieger, P.; Aalto, P. P.; Aaltonen, V.; Aijala, M.; Backman, John; Hong, J.; Komppula, M.; Krejci, R.; Laborde, M.; Lampilahti, J.; de Leeuw, G.; Pfuller, A.; Rosati, B.; Tesche, M.; Tunved, P.; Väänänen, R.; Petaja, T.
Contributor organization: Department of Physics
Aerosol-Cloud-Climate -Interactions (ACCI)
Date: 2015
Language: eng
Number of pages: 21
Belongs to series: Atmospheric Chemistry and Physics
ISSN: 1680-7316
DOI: https://doi.org/10.5194/acp-15-7247-2015
URI: http://hdl.handle.net/10138/161731
Abstract: Ambient aerosol particles can take up water and thus change their optical properties depending on the hygroscopicity and the relative humidity (RH) of the surrounding air. Knowledge of the hygroscopicity effect is of crucial importance for radiative forcing calculations and is also needed for the comparison or validation of remote sensing or model results with in situ measurements. Specifically, particle light scattering depends on RH and can be described by the scattering enhancement factor f(RH), which is defined as the particle light scattering coefficient at defined RH divided by its dry value (RH <30-40 %). Here, we present results of an intensive field campaign carried out in summer 2013 at the SMEAR II station at Hyytiala, Finland. Ground-based and airborne measurements of aerosol optical, chemical and microphysical properties were conducted. The f(RH) measured at ground level by a humidified nephelometer is found to be generally lower (e.g. 1.63 +/- 0.22 at RH = 85% and lambda = 525 nm) than observed at other European sites. One reason is the high organic mass fraction of the aerosol encountered at Hyytiala to which f(RH) is clearly anti-correlated (R-2 approximate to 0.8). A simplified parametrization of f(RH) based on the measured chemical mass fraction can therefore be derived for this aerosol type. A trajectory analysis revealed that elevated values of f(RH) and the corresponding elevated inorganic mass fraction are partially caused by transported hygroscopic sea spray particles. An optical closure study shows the consistency of the ground-based in situ measurements. Our measurements allow to determine the ambient particle light extinction coefficient using the measured f(RH). By combining the ground-based measurements with intensive aircraft measurements of the particle number size distribution and ambient RH, columnar values of the particle extinction coefficient are determined and compared to columnar measurements of a co-located AERONET sun photometer. The water uptake is found to be of minor importance for the column-averaged properties due to the low particle hygroscopicity and the low RH during the daytime of the summer months. The in situ derived aerosol optical depths (AOD) clearly correlate with directly measured values of the sun photometer but are substantially lower compared to the directly measured values (factor of similar to 2-3). The comparison degrades for longer wavelengths. The disagreement between in situ derived and directly measured AOD is hypothesized to originate from losses of coarse and fine mode particles through dry deposition within the canopy and losses in the in situ sampling lines. In addition, elevated aerosol layers (above 3 km) from long-range transport were observed using an aerosol lidar at Kuopio, Finland, about 200 km east-northeast of Hyytiala. These elevated layers further explain parts of the disagreement.
114 Physical sciences
Peer reviewed: Yes
Rights: cc_by
Usage restriction: openAccess
Self-archived version: publishedVersion

Files in this item

Total number of downloads: Loading...

Files Size Format View
acp_15_7247_2015.pdf 5.041Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record