Climatic controls on leaf litter decomposition across European forests and grasslands revealed by reciprocal litter transplantation experiments

Show full item record



Permalink

http://hdl.handle.net/10138/161786

Citation

Portillo-Estrada , M , Pihlatie , M , Korhonen , J F J , Levula , J , Frumau , A K F , Ibrom , A , Lembrechts , J J , Morillas , L , Horvath , L , Jones , S K & Niinemets , U 2016 , ' Climatic controls on leaf litter decomposition across European forests and grasslands revealed by reciprocal litter transplantation experiments ' , Biogeosciences , vol. 13 , no. 5 , pp. 1621-1633 . https://doi.org/10.5194/bg-13-1621-2016

Title: Climatic controls on leaf litter decomposition across European forests and grasslands revealed by reciprocal litter transplantation experiments
Author: Portillo-Estrada, Miguel; Pihlatie, Mari; Korhonen, Janne F. J.; Levula, Janne; Frumau, Arnoud K. F.; Ibrom, Andreas; Lembrechts, Jonas J.; Morillas, Lourdes; Horvath, Laszlo; Jones, Stephanie K.; Niinemets, Uelo
Contributor: University of Helsinki, Department of Physics
University of Helsinki, Department of Physics
University of Helsinki, Department of Physics
Date: 2016
Language: eng
Number of pages: 13
Belongs to series: Biogeosciences
ISSN: 1726-4170
URI: http://hdl.handle.net/10138/161786
Abstract: Carbon (C) and nitrogen (N) cycling under future climate change is associated with large uncertainties in litter decomposition and the turnover of soil C and N. In addition, future conditions (especially altered precipitation regimes and warming) are expected to result in changes in vegetation composition, and accordingly in litter species and chemical composition, but it is unclear how such changes could potentially alter litter decomposition. Litter transplantation experiments were carried out across six European sites (four forests and two grasslands) spanning a large geographical and climatic gradient (5.6-11.4 degrees C in annual temperature 511-878mm in precipitation) to gain insight into the climatic controls on litter decomposition as well as the effect of litter origin and species. The decomposition k rates were overall higher in warmer and wetter sites than in colder and drier sites, and positively correlated with the litter total specific leaf area. Also, litter N content increased as less litter mass remained and decay went further. Surprisingly, this study demonstrates that climatic controls on litter decomposition are quantitatively more important than species or site of origin. Cumulative climatic variables, precipitation, soil water content and air temperature (ignoring days with air temperatures below zero degrees Celsius), were appropriate to predict the litter remaining mass during decomposition (M-r). M-r and cumulative air temperature were found to be the best predictors for litter carbon and nitrogen remaining during the decomposition. Using mean annual air temperature, precipitation, soil water content and litter total specific leaf area as parameters we were able to predict the annual decomposition rate (k) accurately.
Subject: SCOTS PINE FOREST
MASS-LOSS RATES
NITROGEN
CARBON
MODEL
ECOSYSTEMS
SYLVESTRIS
BALANCE
QUALITY
114 Physical sciences
1172 Environmental sciences
Rights:


Files in this item

Total number of downloads: Loading...

Files Size Format View
bg_13_1621_2016.pdf 3.201Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record