Stability Analysis for a Fractional HIV Infection Model with Nonlinear Incidence

Visa fullständig post



Permalänk

http://hdl.handle.net/10138/162392

Citation

Zhang , L , Huang , G , Liu , A & Fan , R 2015 , ' Stability Analysis for a Fractional HIV Infection Model with Nonlinear Incidence ' , Discrete Dynamics in Nature and Society . https://doi.org/10.1155/2015/563127

Titel: Stability Analysis for a Fractional HIV Infection Model with Nonlinear Incidence
Författare: Zhang, Linli; Huang, Gang; Liu, Anping; Fan, Ruili
Upphovmannens organisation: Department of Mathematics and Statistics
Datum: 2015
Språk: eng
Sidantal: 11
Tillhör serie: Discrete Dynamics in Nature and Society
ISSN: 1026-0226
DOI: https://doi.org/10.1155/2015/563127
Permanenta länken (URI): http://hdl.handle.net/10138/162392
Abstrakt: We introduce the fractional-order derivatives into an HIV infection model with nonlinear incidence and show that the established model in this paper possesses nonnegative solution, as desired in any population dynamics. We also deal with the stability of the infection-free equilibrium, the immune-absence equilibrium, and the immune-presence equilibrium. Numerical simulations are carried out to illustrate the results.
Subject: DIFFERENTIAL-EQUATIONS
GLOBAL PROPERTIES
T-CELLS
DYNAMICS
ORDER
SIGNAL
DELAY
111 Mathematics
Referentgranskad: Ja
Licens: cc_by
Användningsbegränsning: openAccess
Parallelpublicerad version: publishedVersion


Filer under denna titel

Totalt antal nerladdningar: Laddar...

Filer Storlek Format Granska
563127.pdf 2.743Mb PDF Granska/Öppna

Detta dokument registreras i samling:

Visa fullständig post