FFLO state in 1-, 2- and 3-dimensional optical lattices combined with a non-uniform background potential

Show full item record



Permalink

http://hdl.handle.net/10138/166261

Citation

Koponen , T K , Paananen , T , Martikainen , J-P , Bakhtiari , M R & Törmä , T 2008 , ' FFLO state in 1-, 2- and 3-dimensional optical lattices combined with a non-uniform background potential ' , New Journal of Physics . https://doi.org/10.1088/1367-2630/10/4/045014

Title: FFLO state in 1-, 2- and 3-dimensional optical lattices combined with a non-uniform background potential
Author: Koponen, T. K; Paananen, Tomi; Martikainen, Jani-Petri; Bakhtiari, M. R; Törmä, T
Contributor: University of Helsinki, Particle Physics and Astrophysics
Date: 2008
Language: eng
Belongs to series: New Journal of Physics
ISSN: 1367-2630
URI: http://hdl.handle.net/10138/166261
Abstract: We study the phase diagram of an imbalanced two-component Fermi gas in optical lattices of 1-3 dimensions (1D-3D), considering the possibilities of the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO), Sarma/breached pair, BCS and normal states as well as phase separation, at finite and zero temperatures. In particular, phase diagrams with respect to average chemical potential and the chemical potential difference of the two components are considered, because this gives the essential information about the shell structures of phases that will occur in the presence of an additional (harmonic) confinement. These phase diagrams in 1D, 2D and 3D show in a striking way the effect of Van Hove singularities on the FFLO state. Although we focus on population imbalanced gases, the results are relevant also for the (effective) mass imbalanced case. We demonstrate by LDA calculations that various shell structures such as normal-FFLO-BCS-FFLO-normal, or FFLO-normal, are possible in presence of a background harmonic trap. The phases are reflected in noise correlations: especially in 1D the unpaired atoms leave a clear signature of the FFLO state as a zero-correlation area ('breach') within the Fermi sea. This strong signature occurs both for a 1D lattice as well as for a 1D continuum. We also discuss the effect of Hartree energies and the Gorkov correction on the phase diagrams.
Rights:


Files in this item

Total number of downloads: Loading...

Files Size Format View
njp8_4_045014.pdf 2.025Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record