Effects of enzymatic removal of plant cell wall acylation (acetylation, p-coumaroylation, and feruloylation) on accessibility of cellulose and xylan in natural (non-pretreated) sugar cane fractions

Show full item record



Permalink

http://hdl.handle.net/10138/166759

Citation

Varnai , A , Costa , T H F , Faulds , C B , Milagres , A M F , Siika-aho , M & Ferraz , A 2014 , ' Effects of enzymatic removal of plant cell wall acylation (acetylation, p-coumaroylation, and feruloylation) on accessibility of cellulose and xylan in natural (non-pretreated) sugar cane fractions ' , Biotechnology for Biofuels , vol. 7 , 153 . https://doi.org/10.1186/s13068-014-0153-3

Title: Effects of enzymatic removal of plant cell wall acylation (acetylation, p-coumaroylation, and feruloylation) on accessibility of cellulose and xylan in natural (non-pretreated) sugar cane fractions
Author: Varnai, Aniko; Costa, Thales H. F.; Faulds, Craig B.; Milagres, Adriane M. F.; Siika-aho, Matti; Ferraz, Andre
Contributor: University of Helsinki, Department of Food and Nutrition
Date: 2014-10-15
Language: eng
Number of pages: 11
Belongs to series: Biotechnology for Biofuels
ISSN: 1754-6834
URI: http://hdl.handle.net/10138/166759
Abstract: Background: Sugar cane internodes can be divided diagonally into four fractions, of which the two innermost ones are the least recalcitrant pith and the moderately accessible pith-rind interface. These fractions differ in enzymatic hydrolyzability due to structural differences. In general, cellulose hydrolysis in plants is hindered by its physical interaction with hemicellulose and lignin. Lignin is believed to be linked covalently to hemicellulose through hydroxycinnamic acids, forming a compact matrix around the polysaccharides. Acetyl xylan esterase and three feruloyl esterases were evaluated for their potential to fragment the lignocellulosic network in sugar cane and to indirectly increase the accessibility of cellulose. Results: The hydrolyzability of the pith and pith-rind interface fractions of a low-lignin-containing sugar cane clone (H58) was compared to that of a reference cultivar (RC). Acetyl xylan esterase enhanced the rate and overall yield of cellulose and xylan hydrolysis in all four substrates. Of the three feruloyl esterases tested, only TsFaeC was capable of releasing p-coumaric acid, while AnFaeA and NcFaeD released ferulic acid from both the pith and interface fractions. Ferulic acid release was higher from the less recalcitrant clone (H58)/fraction (pith), whereas more p-coumaric acid was released from the clone (RC)/fraction (interface) with a higher lignin content. In addition, a compositional analysis of the four fractions revealed that p-coumaroyl content correlated with lignin, while feruloyl content correlated with arabinose content, suggesting different esterification patterns of these two hydroxycinnamic acids. Despite the extensive release of phenolic acids, feruloyl esterases only moderately promoted enzyme access to cellulose or xylan. Conclusions: Acetyl xylan esterase TrAXE was more efficient in enhancing the overall saccharification of sugar cane, compared to the feruloyl esterases AnFaeA, TsFaeC, and NcFaeD. The hydroxycinnamic acid composition of sugar cane fractions and the hydrolysis data together suggest that feruloyl groups are more likely to decorate xylan, while p-coumaroyl groups are rather linked to lignin. The three different feruloyl esterases had distinct product profiles on non-pretreated sugar cane substrate, indicating that sugar cane pith could function as a possible natural substrate for feruloyl esterase activity measurements. Hydrolysis data suggest that TsFaeC was able to release p-coumaroyl groups esterifying lignin.
Subject: Sugar cane
Acetyl xylan esterase (AXE)
Feruloyl esterase (FAE)
Lignin
Hydrolysis
TRICHODERMA-REESEI
CHEMICAL-COMPOSITION
SYNERGISTIC ACTION
TOTAL HYDROLYSIS
PICHIA-PASTORIS
ESTERASE
LIGNIN
IDENTIFICATION
ACIDS
CLASSIFICATION
219 Environmental biotechnology
Rights:


Files in this item

Total number of downloads: Loading...

Files Size Format View
art_3A10.1186_2Fs13068_014_0153_3.pdf 655.4Kb PDF View/Open

This item appears in the following Collection(s)

Show full item record